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Goals
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Smoke simulation for rendering applications
The method needs to be physically correct or at least plausible
For fast fluid computation we should use a coarser grid

We need to have a realistic approximation that avoids
numerical dissipation
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Main Reference

» Most of this talk will come from the paper Visual Simulation
of Smoke by Fedkiw, Stam, and Jensen.

» This paper is both a numerical simulation and rendering
paper. We will only be covering the simulation aspect, but if
you want to know more about the rendering aspect the paper
covers both a hardware based renderer and a photon mapping
renderer.
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The Equations of Fluid Flow |

» Generally, in fluid dynamics, we use the Navier-Stokes system
of equations:

V-i=0 (1)
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i is the velocity field
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\{

p is the pressure

\{

v is the viscocity of the fluid

\{

f is the sum of all external forces on the fluid

\{

The first equation represents the conservation of mass.

\{

The second equation represents the conservation of
momentum of the fluid.
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The Equations of Fluid Flow Il

» In their paper, Fedkiw et al. use the following versions of the
Navier-Stokes equations:
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» This is just the normal Navier-Stokes equations with the
viscosity vector removed.
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The Equations of Fluid Flow IlI

» The term —(u - V)i is also known as the advection term. It

describes how the velocity of the fluid is affected by currents
in the fluid.

» We can also use this term to describe how temperature T and
density p are moved along the system:
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The Equations of Fluid Flow IV

\4

Fedkiw et al. use the calculated temperature and density to
compute the buoyancy force:

fbuoy = —apZ + 6(7_ - Tamb)z (7)
» T is the temperature
» Tamp is the ambient temperature of the system

» Z points in the upwards direction

\{

« and (8 are magic constants
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Numerical Dissipation

» Solving the advection equations with a coarse grid smooths
out fine grain detail called vortices

» Vortices are curling motions of the fluid velocity field

» This smoothing out is called numerical dissipation
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Vorticity Confinement |

» Add vortices back in to get a curling smoke effect.

» The method to do this is called Vorticity Confinement
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Vorticity Confinement Il

» We could perturb the field randomly but this causes strange
artifacts

» Instead we'll look for good locations in the fluid to add in
vorticies
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Understanding Vorticity

» Vorticity is the curl of the velocity of the field:

w=Vx1u (8)
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Vorticity Confinement Il

» In this method, we compute normalized vorticity location

vectors:
n = Vlwl|
n
N=— (9)
|n]

» N is the normalized vorticity location vector.
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Vorticity Confinement IV

\4

Using our normalized velocity location vectors, find a force
that spins around areas of high vorticity:

-

feonf = €h(N X w) (10)

\4

N is the normalized velocity location vector computed in the
previous slide

» ¢ > 0 is used to control the amount of detail added back into
the flow field

h is the distance step between grid cells

\{

\{

This technique was introduced by Steinhoff for modeling the
flow fields around helicopter rotors.
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Implementation: Discretization

» The system is discretized into a grid of voxels for solving our
equations numerically.

» Each voxel center has an associated temperature, density, and
external forces defined for it.

» Velocity is defined for each face of the voxel.
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Implementation: Boundaries

» Boundaries are handled by setting a flag for occupied voxels.

» All faces of occupied voxels have their velocities set to the
velocity of the occupying object.

» The temperature of the occupied voxels are also set to the
object’s temperature

» Occupied cells also have a density of zero except at the
boundary voxels, where they are set to the density of the
closest empty voxel
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Implementation: Overview

\{

Two grids: read and write

\{

The user can set an initial grid or it can be empty

\{

Velocity update:
» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

\{

Temperature and density update
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Implementation: External Forces

User forces

\4

\4

Buoyancy forces computed using temperature and density

\4

Vorticity confinement force

\{

Finite difference method to figure out effect on the velocity
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Implementation: Overview

\{
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\{

The user can set an initial grid or it can be empty

\{

Velocity update:
» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

\{

Temperature and density update

19/34



Implementation: Advection Term |

» Semi-Lagrangian method for solving for the advection term.

» What we're trying to figure out is how the velocity field
changes from advection
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Semi-Lagrangian Methods |

» Frames of reference

» Eulerian
» Lagrangian
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Semi-Lagrangian Methods Il

» Semi-Lagrangian method
» Combines Eulerian and Lagrangian frames of references
» Examine the path of a particle that ends up in a specific grid
point



Semi-Lagrangian Methods Il
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Figure: In the semi-Lagrangian method, a particle is traced back to its
old position
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Semi-Lagrangian Methods IV

» Have some function ¢(X, t) that takes a point on our grid and
a time.

» We want to know the value of ¢(X, t) at a particular node X
and time t,.

» The particle that is at node X at time t, was at some other
point ¥ at time t,_1.

» Estimate the old position of the particle:

Yy =X— AtF(x, th-1) (11)

» &(y, th—1) gives us approximately ¢(x, t,)
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Semi-Lagrangian Methods V

\{

Interpolate if our point ¥ does not lie on a grid node

» Linear interpolation is used for speed and stability

» Fedkiw et al. introduces a cubic interpolator that's slow but
stable
» Paths are clipped against occupied voxels
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Implementation: Advection Term Il

» Use this equation for the advection term:

it —u

At

= —(i-V)a

(12)

26

34



Implementation: Overview

\{

Two grids: read and write

\{

The user can set an initial grid or it can be empty

\{

Velocity update:
» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

\{

Temperature and density update
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Implementation: Conservation of Mass |

» Solve for the pressure term Vp field, i* to be incompressible.

» For a specific time step we have

=-Vp (13)

» Multiplying by V we get:

1 —% 2
EVU =V°p (14)
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Implementation: Conservation of Mass Il

1
2 e
V p——tv i (15)

» This is a Poisson equation with a Neumann boundary
condition, where the pressure is constant at the boundary

» We can then get our final velocity field & by subtracting out
the pressure gradient:

i=0— AtVp )
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Implementation: Conservation of Mass IlI

» To solve the Poisson equation use an iterative solver like the
conjugate gradient method

» Choleski preconditioner to accelerate convergence
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Implementation: Overview

\{

Two grids: read and write

\{

The user can set an initial grid or it can be empty

\{

Velocity update:

» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

» Temperature and density update
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Implementation: Temperature and Density

» These are pure advection equations, so solve using the
semi-Lagrangian method.

» The only difference is that we need to trace back to voxel
centers rather than faces like we had to do with the velocity
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Results |

Figure: Rising smoke. There is no external force, only the buoyancy.
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Results I

Figure: Smoke correctly interacting with potentially moving objects.
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Results I

Figure: Comparison with the linear interpolator (top) and cubic (bottom).
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Results 1V

» While not real time, running the simulation and the hardware
renderer was about 1 second per frame on a 40x40x40 grid.

» On a 20x20x40 grid, the simulation time for the linear
interpolator was 0.1 seconds per frame. For the cubic
interpolator, it was 1.8 seconds per frame.

» More complex simulations ran from around 30 to 75 seconds
per frame.
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Further Work

» The method introduced by Fedkiw et al. for reintroducing
vorticity is not physically correct; it injects extra energy

» More modern methods of computing these kinds of
small-scale detail are a Lagrangian approach introduced by
Narain, Sewall, Carlson, and Lin and a wavelet approach by
Kim, Thiirey, James, and Gross.
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