Visual Simulation of Smoke

Nicolas Morales

November 27, 2012



Goals

\{

v

v

\4

Smoke simulation for rendering applications
The method needs to be physically correct or at least plausible
For fast fluid computation we should use a coarser grid

We need to have a realistic approximation that avoids
numerical dissipation

34



Main Reference

» Most of this talk will come from the paper Visual Simulation
of Smoke by Fedkiw, Stam, and Jensen.

» This paper is both a numerical simulation and rendering
paper. We will only be covering the simulation aspect, but if
you want to know more about the rendering aspect the paper
covers both a hardware based renderer and a photon mapping
renderer.

34



The Equations of Fluid Flow |

» Generally, in fluid dynamics, we use the Navier-Stokes system
of equations:

V-i=0 (1)

5t ;
L (G-V)i— —Vp+ V2t f (2)

5

i is the velocity field

\4

\{

p is the pressure

\{

v is the viscocity of the fluid

\{

f is the sum of all external forces on the fluid

\{

The first equation represents the conservation of mass.

\{

The second equation represents the conservation of
momentum of the fluid.

34



The Equations of Fluid Flow Il

» In their paper, Fedkiw et al. use the following versions of the
Navier-Stokes equations:

V-i=0 ©)

od . . z

E:—(U-V)U—Vp-i-f (4)

» This is just the normal Navier-Stokes equations with the
viscosity vector removed.

5/34



The Equations of Fluid Flow IlI

» The term —(u - V)i is also known as the advection term. It

describes how the velocity of the fluid is affected by currents
in the fluid.

» We can also use this term to describe how temperature T and
density p are moved along the system:

oT .
o @7 )
% @) ©)

6 /34



The Equations of Fluid Flow IV

\4

Fedkiw et al. use the calculated temperature and density to
compute the buoyancy force:

fbuoy = —apZ + 6(7_ - Tamb)z (7)
» T is the temperature
» Tamp is the ambient temperature of the system

» Z points in the upwards direction

\{

« and (8 are magic constants

34



Numerical Dissipation

» Solving the advection equations with a coarse grid smooths
out fine grain detail called vortices

» Vortices are curling motions of the fluid velocity field

» This smoothing out is called numerical dissipation

34



Vorticity Confinement |

» Add vortices back in to get a curling smoke effect.

» The method to do this is called Vorticity Confinement

34



Vorticity Confinement Il

» We could perturb the field randomly but this causes strange
artifacts

» Instead we'll look for good locations in the fluid to add in
vorticies

10/34



Understanding Vorticity

» Vorticity is the curl of the velocity of the field:

w=Vx1u (8)

11 /34



Vorticity Confinement Il

» In this method, we compute normalized vorticity location

vectors:
n = Vlwl|
n
N=— (9)
|n]

» N is the normalized vorticity location vector.

12 /34



Vorticity Confinement IV

\4

Using our normalized velocity location vectors, find a force
that spins around areas of high vorticity:

-

feonf = €h(N X w) (10)

\4

N is the normalized velocity location vector computed in the
previous slide

» ¢ > 0 is used to control the amount of detail added back into
the flow field

h is the distance step between grid cells

\{

\{

This technique was introduced by Steinhoff for modeling the
flow fields around helicopter rotors.

13 /34



Implementation: Discretization

» The system is discretized into a grid of voxels for solving our
equations numerically.

» Each voxel center has an associated temperature, density, and
external forces defined for it.

» Velocity is defined for each face of the voxel.

14 /34



Implementation: Boundaries

» Boundaries are handled by setting a flag for occupied voxels.

» All faces of occupied voxels have their velocities set to the
velocity of the occupying object.

» The temperature of the occupied voxels are also set to the
object’s temperature

» Occupied cells also have a density of zero except at the
boundary voxels, where they are set to the density of the
closest empty voxel

15 /34



Implementation: Overview

\{

Two grids: read and write

\{

The user can set an initial grid or it can be empty

\{

Velocity update:
» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

\{

Temperature and density update

16 /34



Implementation: Overview

\{

Two grids: read and write

\{

The user can set an initial grid or it can be empty

\{

Velocity update:
» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

\{

Temperature and density update

17 /34



Implementation: External Forces

User forces

\4

\4

Buoyancy forces computed using temperature and density

\4

Vorticity confinement force

\{

Finite difference method to figure out effect on the velocity

18 /34



Implementation: Overview

\{

Two grids: read and write

\{

The user can set an initial grid or it can be empty

\{

Velocity update:
» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

\{

Temperature and density update

19/34



Implementation: Advection Term |

» Semi-Lagrangian method for solving for the advection term.

» What we're trying to figure out is how the velocity field
changes from advection

20 /34



Semi-Lagrangian Methods |

» Frames of reference

» Eulerian
» Lagrangian

21/34



Semi-Lagrangian Methods Il

» Semi-Lagrangian method
» Combines Eulerian and Lagrangian frames of references
» Examine the path of a particle that ends up in a specific grid
point



Semi-Lagrangian Methods Il

& (7, t?.)

iPNE

?__
@(5 tn—1 )

Figure: In the semi-Lagrangian method, a particle is traced back to its
old position

23 /34



Semi-Lagrangian Methods IV

» Have some function ¢(X, t) that takes a point on our grid and
a time.

» We want to know the value of ¢(X, t) at a particular node X
and time t,.

» The particle that is at node X at time t, was at some other
point ¥ at time t,_1.

» Estimate the old position of the particle:

Yy =X— AtF(x, th-1) (11)

» &(y, th—1) gives us approximately ¢(x, t,)

24 /34



Semi-Lagrangian Methods V

\{

Interpolate if our point ¥ does not lie on a grid node

» Linear interpolation is used for speed and stability

» Fedkiw et al. introduces a cubic interpolator that's slow but
stable
» Paths are clipped against occupied voxels

25 /34



Implementation: Advection Term Il

» Use this equation for the advection term:

it —u

At

= —(i-V)a

(12)

26

34



Implementation: Overview

\{

Two grids: read and write

\{

The user can set an initial grid or it can be empty

\{

Velocity update:
» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

\{

Temperature and density update

27 /34



Implementation: Conservation of Mass |

» Solve for the pressure term Vp field, i* to be incompressible.

» For a specific time step we have

=-Vp (13)

» Multiplying by V we get:

1 —% 2
EVU =V°p (14)

28 /34



Implementation: Conservation of Mass Il

1
2 e
V p——tv i (15)

» This is a Poisson equation with a Neumann boundary
condition, where the pressure is constant at the boundary

» We can then get our final velocity field & by subtracting out
the pressure gradient:

i=0— AtVp )

29 /34



Implementation: Conservation of Mass IlI

» To solve the Poisson equation use an iterative solver like the
conjugate gradient method

» Choleski preconditioner to accelerate convergence

30/34



Implementation: Overview

\{

Two grids: read and write

\{

The user can set an initial grid or it can be empty

\{

Velocity update:

» Adding in external forces
» Solve for the advection term
» Force the velocity field to conserve mass

» Temperature and density update

31/34



Implementation: Temperature and Density

» These are pure advection equations, so solve using the
semi-Lagrangian method.

» The only difference is that we need to trace back to voxel
centers rather than faces like we had to do with the velocity

32 /34



Results |

Figure: Rising smoke. There is no external force, only the buoyancy.

33/34



Results I

Figure: Smoke correctly interacting with potentially moving objects.

34/34



Results I

Figure: Comparison with the linear interpolator (top) and cubic (bottom).

35/34



Results 1V

» While not real time, running the simulation and the hardware
renderer was about 1 second per frame on a 40x40x40 grid.

» On a 20x20x40 grid, the simulation time for the linear
interpolator was 0.1 seconds per frame. For the cubic
interpolator, it was 1.8 seconds per frame.

» More complex simulations ran from around 30 to 75 seconds
per frame.

36 /34



Further Work

» The method introduced by Fedkiw et al. for reintroducing
vorticity is not physically correct; it injects extra energy

» More modern methods of computing these kinds of
small-scale detail are a Lagrangian approach introduced by
Narain, Sewall, Carlson, and Lin and a wavelet approach by
Kim, Thiirey, James, and Gross.

37 /34



References |

E T. Brochu.
Fluid simulation for video games.
http://software.intel.com/en-us/articles/
fluid-simulation-for-video-games—-part-1.

E T. Brochu.
Semi-lagrangian time integration.
http://www.cs.ubc.ca/~tbrochu/projects/semil.pdf.

E A Chorin.
A numerical method for solving incompressible viscous flow
problems.
Computer Graphics, 1967.

E R. Fedkiw, J. Stam, and H. W. Jensen.
Visual simulation of smoke.
ACM Siggraph 2001, 2001.

38/34


http://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-1
http://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-1
http://www.cs.ubc.ca/~tbrochu/projects/semil.pdf

References |l

B T Kim, N. Thirey, D. James, and M. Gross.
Wavelet turbulence for fluid simulation.
ACM Siggraph 2008, 2008.

E R. Narain, J. Sewall, M. Carlson, and M. Lin.
Fast animation of turbulence using energy transport and
procedural synthesis.
ACM Siggraph Asia 2008, 2008.

E J Stam.
Stable fluids.
ACM Siggraph 1999, 1999.

39/34



