
Visual Simulation of Smoke

Nicolas Morales

November 27, 2012

Goals

I Smoke simulation for rendering applications

I The method needs to be physically correct or at least plausible

I For fast fluid computation we should use a coarser grid

I We need to have a realistic approximation that avoids
numerical dissipation

2 / 34

Main Reference

I Most of this talk will come from the paper Visual Simulation
of Smoke by Fedkiw, Stam, and Jensen.

I This paper is both a numerical simulation and rendering
paper. We will only be covering the simulation aspect, but if
you want to know more about the rendering aspect the paper
covers both a hardware based renderer and a photon mapping
renderer.

3 / 34

The Equations of Fluid Flow I

I Generally, in fluid dynamics, we use the Navier-Stokes system
of equations:

∇ · ~u = ~0 (1)

δ~u

δt
= −(~u · ∇)~u − 1

p
∇p + v∇2~u + ~f (2)

I ~u is the velocity field

I p is the pressure

I v is the viscocity of the fluid

I ~f is the sum of all external forces on the fluid

I The first equation represents the conservation of mass.

I The second equation represents the conservation of
momentum of the fluid.

4 / 34

The Equations of Fluid Flow II

I In their paper, Fedkiw et al. use the following versions of the
Navier-Stokes equations:

∇ · ~u = ~0 (3)

δ~u

δt
= −(~u · ∇)~u −∇p + ~f (4)

I This is just the normal Navier-Stokes equations with the
viscosity vector removed.

5 / 34

The Equations of Fluid Flow III

I The term −(~u · ∇)~u is also known as the advection term. It
describes how the velocity of the fluid is affected by currents
in the fluid.

I We can also use this term to describe how temperature T and
density ρ are moved along the system:

δT

δt
= −(~u · ∇)T (5)

δρ

δt
= −(~u · ∇)ρ (6)

6 / 34

The Equations of Fluid Flow IV

I Fedkiw et al. use the calculated temperature and density to
compute the buoyancy force:

~fbuoy = −αρ~z + β(T − Tamb)~z (7)

I T is the temperature

I Tamb is the ambient temperature of the system

I ~z points in the upwards direction

I α and β are magic constants

7 / 34

Numerical Dissipation

I Solving the advection equations with a coarse grid smooths
out fine grain detail called vortices

I Vortices are curling motions of the fluid velocity field

I This smoothing out is called numerical dissipation

8 / 34

Vorticity Confinement I

I Add vortices back in to get a curling smoke effect.

I The method to do this is called Vorticity Confinement

9 / 34

Vorticity Confinement II

I We could perturb the field randomly but this causes strange
artifacts

I Instead we’ll look for good locations in the fluid to add in
vorticies

10 / 34

Understanding Vorticity

I Vorticity is the curl of the velocity of the field:

ω = ∇× ~u (8)

11 / 34

Vorticity Confinement III

I In this method, we compute normalized vorticity location
vectors:

η = ∇|ω|

N =
η

|η|
(9)

I N is the normalized vorticity location vector.

12 / 34

Vorticity Confinement IV

I Using our normalized velocity location vectors, find a force
that spins around areas of high vorticity:

~fconf = εh(N × ω) (10)

I N is the normalized velocity location vector computed in the
previous slide

I ε > 0 is used to control the amount of detail added back into
the flow field

I h is the distance step between grid cells

I This technique was introduced by Steinhoff for modeling the
flow fields around helicopter rotors.

13 / 34

Implementation: Discretization

I The system is discretized into a grid of voxels for solving our
equations numerically.

I Each voxel center has an associated temperature, density, and
external forces defined for it.

I Velocity is defined for each face of the voxel.

14 / 34

Implementation: Boundaries

I Boundaries are handled by setting a flag for occupied voxels.

I All faces of occupied voxels have their velocities set to the
velocity of the occupying object.

I The temperature of the occupied voxels are also set to the
object’s temperature

I Occupied cells also have a density of zero except at the
boundary voxels, where they are set to the density of the
closest empty voxel

15 / 34

Implementation: Overview

I Two grids: read and write

I The user can set an initial grid or it can be empty
I Velocity update:

I Adding in external forces
I Solve for the advection term
I Force the velocity field to conserve mass

I Temperature and density update

16 / 34

Implementation: Overview

I Two grids: read and write

I The user can set an initial grid or it can be empty
I Velocity update:

I Adding in external forces
I Solve for the advection term
I Force the velocity field to conserve mass

I Temperature and density update

17 / 34

Implementation: External Forces

I User forces

I Buoyancy forces computed using temperature and density

I Vorticity confinement force

I Finite difference method to figure out effect on the velocity

18 / 34

Implementation: Overview

I Two grids: read and write

I The user can set an initial grid or it can be empty
I Velocity update:

I Adding in external forces
I Solve for the advection term
I Force the velocity field to conserve mass

I Temperature and density update

19 / 34

Implementation: Advection Term I

I Semi-Lagrangian method for solving for the advection term.

I What we’re trying to figure out is how the velocity field
changes from advection

20 / 34

Semi-Lagrangian Methods I

I Frames of reference
I Eulerian
I Lagrangian

21 / 34

Semi-Lagrangian Methods II

I Semi-Lagrangian method
I Combines Eulerian and Lagrangian frames of references
I Examine the path of a particle that ends up in a specific grid

point

22 / 34

Semi-Lagrangian Methods III

Figure: In the semi-Lagrangian method, a particle is traced back to its
old position

23 / 34

Semi-Lagrangian Methods IV

I Have some function φ(~x , t) that takes a point on our grid and
a time.

I We want to know the value of φ(~x , t) at a particular node ~x
and time tn.

I The particle that is at node ~x at time tn was at some other
point ~y at time tn−1.

I Estimate the old position of the particle:

~y = ~x −∆tF (x , tn−1) (11)

I φ(y , tn−1) gives us approximately φ(x , tn)

24 / 34

Semi-Lagrangian Methods V

I Interpolate if our point ~y does not lie on a grid node

I Linear interpolation is used for speed and stability

I Fedkiw et al. introduces a cubic interpolator that’s slow but
stable

I Paths are clipped against occupied voxels

25 / 34

Implementation: Advection Term II

I Use this equation for the advection term:

~u∗ − ~u
∆t

= −(~u · ∇)~u (12)

26 / 34

Implementation: Overview

I Two grids: read and write

I The user can set an initial grid or it can be empty
I Velocity update:

I Adding in external forces
I Solve for the advection term
I Force the velocity field to conserve mass

I Temperature and density update

27 / 34

Implementation: Conservation of Mass I

I Solve for the pressure term ∇p field, ~u∗ to be incompressible.

I For a specific time step we have

~u∗ − ~u
∆t

= −∇p (13)

I Multiplying by ∇ we get:

1

∆t
∇~u∗ = ∇2p (14)

28 / 34

Implementation: Conservation of Mass II

I

∇2p =
1

∆t
∇ · ~u∗ (15)

I This is a Poisson equation with a Neumann boundary
condition, where the pressure is constant at the boundary

I We can then get our final velocity field ~u by subtracting out
the pressure gradient:

~u = ~u∗ −∆t∇p (16)

29 / 34

Implementation: Conservation of Mass III

I To solve the Poisson equation use an iterative solver like the
conjugate gradient method

I Choleski preconditioner to accelerate convergence

30 / 34

Implementation: Overview

I Two grids: read and write

I The user can set an initial grid or it can be empty
I Velocity update:

I Adding in external forces
I Solve for the advection term
I Force the velocity field to conserve mass

I Temperature and density update

31 / 34

Implementation: Temperature and Density

I These are pure advection equations, so solve using the
semi-Lagrangian method.

I The only difference is that we need to trace back to voxel
centers rather than faces like we had to do with the velocity

32 / 34

Results I

Figure: Rising smoke. There is no external force, only the buoyancy.

33 / 34

Results II

Figure: Smoke correctly interacting with potentially moving objects.

34 / 34

Results III

Figure: Comparison with the linear interpolator (top) and cubic (bottom).

35 / 34

Results IV

I While not real time, running the simulation and the hardware
renderer was about 1 second per frame on a 40x40x40 grid.

I On a 20x20x40 grid, the simulation time for the linear
interpolator was 0.1 seconds per frame. For the cubic
interpolator, it was 1.8 seconds per frame.

I More complex simulations ran from around 30 to 75 seconds
per frame.

36 / 34

Further Work

I The method introduced by Fedkiw et al. for reintroducing
vorticity is not physically correct; it injects extra energy

I More modern methods of computing these kinds of
small-scale detail are a Lagrangian approach introduced by
Narain, Sewall, Carlson, and Lin and a wavelet approach by
Kim, Thürey, James, and Gross.

37 / 34

References I

T. Brochu.
Fluid simulation for video games.
http://software.intel.com/en-us/articles/

fluid-simulation-for-video-games-part-1.

T. Brochu.
Semi-lagrangian time integration.
http://www.cs.ubc.ca/~tbrochu/projects/semil.pdf.

A. Chorin.
A numerical method for solving incompressible viscous flow
problems.
Computer Graphics, 1967.

R. Fedkiw, J. Stam, and H. W. Jensen.
Visual simulation of smoke.
ACM Siggraph 2001, 2001.

38 / 34

http://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-1
http://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-1
http://www.cs.ubc.ca/~tbrochu/projects/semil.pdf

References II

T. Kim, N. Thürey, D. James, and M. Gross.
Wavelet turbulence for fluid simulation.
ACM Siggraph 2008, 2008.

R. Narain, J. Sewall, M. Carlson, and M. Lin.
Fast animation of turbulence using energy transport and
procedural synthesis.
ACM Siggraph Asia 2008, 2008.

J. Stam.
Stable fluids.
ACM Siggraph 1999, 1999.

39 / 34

