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Goals

I Smoke simulation for rendering applications

I The method needs to be physically correct or at least plausible

I For fast fluid computation we should use a coarser grid

I We need to have a realistic approximation that avoids
numerical dissipation
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Main Reference

I Most of this talk will come from the paper Visual Simulation
of Smoke by Fedkiw, Stam, and Jensen.

I This paper is both a numerical simulation and rendering
paper. We will only be covering the simulation aspect, but if
you want to know more about the rendering aspect the paper
covers both a hardware based renderer and a photon mapping
renderer.
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The Equations of Fluid Flow I

I Generally, in fluid dynamics, we use the Navier-Stokes system
of equations:

∇ · ~u = ~0 (1)

δ~u

δt
= −(~u · ∇)~u − 1

p
∇p + v∇2~u + ~f (2)

I ~u is the velocity field

I p is the pressure

I v is the viscocity of the fluid

I ~f is the sum of all external forces on the fluid

I The first equation represents the conservation of mass.

I The second equation represents the conservation of
momentum of the fluid.
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The Equations of Fluid Flow II

I In their paper, Fedkiw et al. use the following versions of the
Navier-Stokes equations:

∇ · ~u = ~0 (3)

δ~u

δt
= −(~u · ∇)~u −∇p + ~f (4)

I This is just the normal Navier-Stokes equations with the
viscosity vector removed.
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The Equations of Fluid Flow III

I The term −(~u · ∇)~u is also known as the advection term. It
describes how the velocity of the fluid is affected by currents
in the fluid.

I We can also use this term to describe how temperature T and
density ρ are moved along the system:

δT

δt
= −(~u · ∇)T (5)

δρ

δt
= −(~u · ∇)ρ (6)
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The Equations of Fluid Flow IV

I Fedkiw et al. use the calculated temperature and density to
compute the buoyancy force:

~fbuoy = −αρ~z + β(T − Tamb)~z (7)

I T is the temperature

I Tamb is the ambient temperature of the system

I ~z points in the upwards direction

I α and β are magic constants
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Numerical Dissipation

I Solving the advection equations with a coarse grid smooths
out fine grain detail called vortices

I Vortices are curling motions of the fluid velocity field

I This smoothing out is called numerical dissipation
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Vorticity Confinement I

I Add vortices back in to get a curling smoke effect.

I The method to do this is called Vorticity Confinement
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Vorticity Confinement II

I We could perturb the field randomly but this causes strange
artifacts

I Instead we’ll look for good locations in the fluid to add in
vorticies
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Understanding Vorticity

I Vorticity is the curl of the velocity of the field:

ω = ∇× ~u (8)
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Vorticity Confinement III

I In this method, we compute normalized vorticity location
vectors:

η = ∇|ω|

N =
η

|η|
(9)

I N is the normalized vorticity location vector.
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Vorticity Confinement IV

I Using our normalized velocity location vectors, find a force
that spins around areas of high vorticity:

~fconf = εh(N × ω) (10)

I N is the normalized velocity location vector computed in the
previous slide

I ε > 0 is used to control the amount of detail added back into
the flow field

I h is the distance step between grid cells

I This technique was introduced by Steinhoff for modeling the
flow fields around helicopter rotors.
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Implementation: Discretization

I The system is discretized into a grid of voxels for solving our
equations numerically.

I Each voxel center has an associated temperature, density, and
external forces defined for it.

I Velocity is defined for each face of the voxel.
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Implementation: Boundaries

I Boundaries are handled by setting a flag for occupied voxels.

I All faces of occupied voxels have their velocities set to the
velocity of the occupying object.

I The temperature of the occupied voxels are also set to the
object’s temperature

I Occupied cells also have a density of zero except at the
boundary voxels, where they are set to the density of the
closest empty voxel
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Implementation: Overview

I Two grids: read and write

I The user can set an initial grid or it can be empty
I Velocity update:

I Adding in external forces
I Solve for the advection term
I Force the velocity field to conserve mass

I Temperature and density update
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Implementation: External Forces

I User forces

I Buoyancy forces computed using temperature and density

I Vorticity confinement force

I Finite difference method to figure out effect on the velocity
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Implementation: Advection Term I

I Semi-Lagrangian method for solving for the advection term.

I What we’re trying to figure out is how the velocity field
changes from advection
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Semi-Lagrangian Methods I

I Frames of reference
I Eulerian
I Lagrangian
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Semi-Lagrangian Methods II

I Semi-Lagrangian method
I Combines Eulerian and Lagrangian frames of references
I Examine the path of a particle that ends up in a specific grid

point
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Semi-Lagrangian Methods III

Figure: In the semi-Lagrangian method, a particle is traced back to its
old position
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Semi-Lagrangian Methods IV

I Have some function φ(~x , t) that takes a point on our grid and
a time.

I We want to know the value of φ(~x , t) at a particular node ~x
and time tn.

I The particle that is at node ~x at time tn was at some other
point ~y at time tn−1.

I Estimate the old position of the particle:

~y = ~x −∆tF (x , tn−1) (11)

I φ(y , tn−1) gives us approximately φ(x , tn)
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Semi-Lagrangian Methods V

I Interpolate if our point ~y does not lie on a grid node

I Linear interpolation is used for speed and stability

I Fedkiw et al. introduces a cubic interpolator that’s slow but
stable

I Paths are clipped against occupied voxels
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Implementation: Advection Term II

I Use this equation for the advection term:

~u∗ − ~u
∆t

= −(~u · ∇)~u (12)
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Implementation: Overview

I Two grids: read and write

I The user can set an initial grid or it can be empty
I Velocity update:

I Adding in external forces
I Solve for the advection term
I Force the velocity field to conserve mass

I Temperature and density update
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Implementation: Conservation of Mass I

I Solve for the pressure term ∇p field, ~u∗ to be incompressible.

I For a specific time step we have

~u∗ − ~u
∆t

= −∇p (13)

I Multiplying by ∇ we get:

1

∆t
∇~u∗ = ∇2p (14)
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Implementation: Conservation of Mass II

I

∇2p =
1

∆t
∇ · ~u∗ (15)

I This is a Poisson equation with a Neumann boundary
condition, where the pressure is constant at the boundary

I We can then get our final velocity field ~u by subtracting out
the pressure gradient:

~u = ~u∗ −∆t∇p (16)
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Implementation: Conservation of Mass III

I To solve the Poisson equation use an iterative solver like the
conjugate gradient method

I Choleski preconditioner to accelerate convergence
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Implementation: Temperature and Density

I These are pure advection equations, so solve using the
semi-Lagrangian method.

I The only difference is that we need to trace back to voxel
centers rather than faces like we had to do with the velocity
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Results I

Figure: Rising smoke. There is no external force, only the buoyancy.
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Results II

Figure: Smoke correctly interacting with potentially moving objects.
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Results III

Figure: Comparison with the linear interpolator (top) and cubic (bottom).
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Results IV

I While not real time, running the simulation and the hardware
renderer was about 1 second per frame on a 40x40x40 grid.

I On a 20x20x40 grid, the simulation time for the linear
interpolator was 0.1 seconds per frame. For the cubic
interpolator, it was 1.8 seconds per frame.

I More complex simulations ran from around 30 to 75 seconds
per frame.
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Further Work

I The method introduced by Fedkiw et al. for reintroducing
vorticity is not physically correct; it injects extra energy

I More modern methods of computing these kinds of
small-scale detail are a Lagrangian approach introduced by
Narain, Sewall, Carlson, and Lin and a wavelet approach by
Kim, Thürey, James, and Gross.
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