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Abstract 
In this paper we describe a method for simulating motion of realistically complex plants interactively.  
We use a precomputation stage to generate the plant structure, along with a set of simulation levels of 
detail.  The levels of detail are made by continuously grouping branches starting from the tips of the 
branches and working toward the trunk.  Grouped branches are simulated as single branches that have 
similar simulation characteristics to the original branches.  During run-time, we traverse the plant and 
determine the allowable error in the simulation of branch motion.  This allows us to choose the 
appropriate simulation level of detail and we provide smooth transitions from level to level.  Our level of 
detail approach affects only the simulation parameters, allowing geometry to be handled independently.  
Using this method we can significantly improve simulation times for complex trees. 
 
Categories and Subject Descriptors: I.3.7 
[Computer Graphics]:  Three-Dimensional 
Graphics and Realism -- Animation; I.3.5 
[Computer Graphics]: Computational Geometry 
and Object Modeling – Physically based modeling 

1 Introduction

Due to their ubiquity in natural environments, plants and 
trees are important features in almost all animations of 
outdoor scenes.  Furthermore, because they are flexible 
objects, the motion of these plants in response to wind or 
other external forces provides an important, if sometimes 
subtle, visual cue for establishing the realism of the scene.  
Unfortunately, plants and trees can be quite complex, and 
as a result any simulation of the motion is likely to take a 
great deal of time.  For environments with several trees, 
this is particularly the case.  If we are to have any hope of 
simulating groups of trees for interactive applications, a 
level of detail approach will be needed. 
 There has been a great deal of previous work on the 
modeling of plant growth.  Less work has focused on the 
simulation of plant motion, and less still on methods for 
increasing the performance of such simulations. Our 
approach is aimed at this final area: increasing the 
efficiency of plant motion simulation through the use of 
simulation levels of detail.  A goal is to be able to apply our 
method to an environment composed of many trees, each 
defined with realistic complexity (in terms of number of 
leaves and branches). 
 Simulation levels of detail (SLODs) are the animation 
analog to geometric levels of detail.  With geometric 
LODs, simplified geometric representations requiring less 
rendering time (but providing less detail) replace the highly 
detailed original model, when this replacement will result 
in no or minimal visual error.  Sim1ilarly, with simulation 
LODs, a less complex simulation is used to replace the 
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detailed higher-level simulation. With both geometric 
LODs and SLODs, smooth transitions between the LODs 
are of key importance.  When transitions are not smooth, 
the “popping” as the LOD changes can be extremely 
distracting. 
 Main Results:  We present a method for generating and 
using levels of detail in the simulation of plant motion.  We 
take a plant from its initial representation and automatically 
create a simplification hierarchy that, when simulating 
plant/wind interaction, behaves the same as the original in 
certain key ways.  This allows simulation of large groups of 
plants because those hidden or far away can be 
significantly simplified yet yield visually realistic results.  
The simulation is stored as a simple articulated tree 
structure (generated, for example, by an L-system).  The 
simplified simulation LODs are created by combining 
either sets of child branches or parent-child branch 
combinations. The structure for rendering is constructed 
from the original tree and can be simplified separately from 
the simulation structure.  We also provide for smooth 
transitions between the SLODs at run-time. 
 In comparison to other methods for simulation of plant 
motion, the distinguishing features of our method are: 

• We provide a method for automatically building 
a SLOD hierarchy from the articulated structure. 

• We provide an error metric for the simulation 
error associated with each LOD. 

• We provide a method for smooth transitioning 
between LODs, accounting for issues such as 
divergent motion among child branches. 

• Our method can be applied to portions of a tree or 
to separate trees, making it fully extensible to 
arbitrarily large simulation environments. 

2 Previous Work 

Plant Modeling: Modeling of plant shape has been a major 
area of research for many years.  The most fundamental 
work in this area has been the work of Lindenmayer and 
Prusinkiewicz (see, e.g. [PL90]).  Lindenmayer systems, or 
L-systems, form the basis for much of the subsequent plant 
modeling work.  There is a great deal of published work 
relating to plant modeling, including detailed descriptions 
of parameters that can be used to define specific trees 
[Blo85], parameter classes to describe varieties of trees 
[WP95], and how plants behave together in ecosystems 
[DHL*98].  This is just a small sampling of the relevant 
work in these areas. Most of this work, however, has 
focused primarily on the physical description of static 
models. 
 Plant Motion: There has been less work focused on the 
description of plant motion.  Wind is a primary source of 
force driving plant and tree motion, and has been the 
subject of study on its own [SF92,WZF*03].  Stam 
specifically illustrates such wind motion by application to 
tree branches [Sta97].  Weber and Penn discuss simulating 
tree motion as a system of oscillators, but do not provide 
direct examples [WP95].  Sakaguchi and Ohya provide 
what is probably the most physically accurate model of 
motion [SO99]. A number of other papers have also dealt 
with plant motion, either primarily or as a side issue.  
Because simulation of plant motion is clearly a time-
intensive process, several of the papers describing general 
plant motion have discussed methods for making that 

motion interactive [PC01,DCF01,EMF03]. A comparison 
of our method with some of these other methods is 
provided in section 7.1. 

Simulation LODs: SLODs have come into prominence 
only in the last few years [Ber97,CF97]. They have 
sometimes taken other names—Endo et al. refer to them as 
levels of motion detail, or LOmDs [EMF03].  There have 
been a wide variety of applications for SLODs.  These 
include rigid body dynamics and motion 
[CIF99,DO01,CAF01], simple collision detection and 
response [CH97,ODG*03], particle systems [OFL01], and 
hair [WLL*03].  It is likely that future advances will extend 
SLOD principles into a number of other areas, as well. 

3 Basics and Overview 

We give a brief overview of our plant representation and 
method for simulating plant motion. We follow that with a 
brief overview of our SLOD method.  

Though our implementation is unique, the methods for 
describing the plants and simulating motion (without any 
SLODs) are fundamentally the same as what is found in 
other common implementations. In fact, although we 
describe our implemented method here, the contributions of 
this paper would also apply equally well for many possible 
variations in the form of the model description or the 
method for simulating motion.  For these reasons, we give 
only a brief review of our implemented approaches, and 
refer the reader elsewhere for more details of these aspects 
[WP95,DCF01,SO99]. 

3.1 Plant Modeling 

We describe our plants using an L-system, following the 
traditional methods for representing plants. The specific L-
system grammar we implement is a stochastic turtle 
interpretation where several parameters can be randomly 
scaled.  From this L-system we generate an articulated 
plant structure.   We also provide a more direct method for 
generating the articulated structure, following the method 
of Weber and Penn [WP95].  Our plant structure consists of 
rigid links connected at joints.  Flexible segments are 
represented as a series of rigid links. We will use standard 
tree definitions to refer to these segments: a parent segment 
can have one or more child segments arising from it.  A 
segment at the edge of the tree (with a leaf attached) will be 
called terminal. 

The basic information specified in our grammar includes: 
• The lengths of branches 
• The orientation of child branches relative to the 

parent 
• The strengths of the joints (equivalent to spring 

constants, as described below) 
• Whether a branch has a leaf attached to the end, 

and the area of that leaf 
This is the information used to generate our SLODs. 

3.2 Plant Motion 

Plant motion is driven through the application of external 
forces.  Generally, this is specified as a wind field, though 
there is no reason specific impulses within the plant could 
not also be applied.  The joints of our model are treated as 
angular springs. Force information is propagated 



 
 

 

throughout the plant. This creates an oscillatory motion 
governed by the bend strengths defined in our L-system..   
 Note that we actually specify two springs at each joint. 
Assuming the parent segment is oriented along the 
direction p, and the child along the direction c, one angular 
spring resists rotation on the axis p× c, and the other resists 
rotation along the axis p. (If p and c are parallel we just use 
two orthogonal axes perpendicular to p.) This effectively 
allows anisotropic bend strengths, enabling us to model 
greater resistance to bending in certain directions relative to 
the parent axis. No third axis is specified, as we do not 
allow branches to twist about themselves. To be more 
precise, we should use axes of p× c and c× (p× c), but this 
difference is usually minor.  In our discussion below and in 
our implementation, we generally assign both bend 
strengths to be the same, in order to cut down on the 
parameter space.  
 Generally, external force due to wind is applied at the 
leaves, and is assumed directly proportional to the area of 
the leaf (and the strength of the wind); direction is also 
taken into account.  This force, applied at the leaf, is then 
propagated to the parent branch.  This propagation 
continues all the way to the root of the tree.  Swaying of the 
trunk is thus governed by the combined effects of wind at 
the leaves being propagated to the trunk. We can also add 
in force due to wind directly hitting branches, but find that 
the leaf-only approach is better suited for simplification, 
and we assume that in the following discussions. 
 We use an Euler integration scheme to update positions at 
each time step based on the velocity from the previous time 
step, and update velocities based on the acceleration 
(force). Euler integration provides good results, but more 
complex integration schemes could potentially be used. 

3.3 Overview of Our Approach  

We form a sequence of simulation levels of detail.  We 
follow an approach of working from the outermost 
branches (connected to leaves) inward toward the root.  
When we have a parent with a single terminal child, we 
combine those two segments into a single new (terminal) 
segment.  When we have a parent with multiple terminal 
children, those children are replaced by a single terminal 
child.  The key to making these replacements is that the 
substituted segment must behave similarly (within certain 
error bounds) within the simulation. All of this is done as a 
precomputation phase.  At run-time, the particular amount 
of error to be allowed in a simulation is determined, and 

based on this, the precomputed SLOD corresponding to 
that error level is used.  We also take into account how to 
move smoothly from one LOD to another to avoid popping 
artifacts in the simulation.  Figure 2 demonstrates the 
SLOD structure for a simplified tree. 
 It is important to note that the simplification we make is 
to the simulation structure.  Geometry can be mapped to 
the simulation structure (and at the most basic level, they 
are usually assumed to be directly related), but 
simplifications in the simulation structure do not change the 
geometric representation of the object.  Thus, the 
simulation could be simplified to a single segment, while 
the number of polygons rendered for the plant need not 
change. 

We note that there is no fundamental reason that we must 
simplify from the outermost node inward.  We could allow 
simplification at any level of the tree, and build up a 
simplification hierarchy in this way.  However, such an 
approach would entail a significantly more complex data 
structure than can be achieved by simplifying from the 
leaves toward the root. 

4 Generating SLODs 

For a given plant, described as an articulated tree structure, 
we will generate a set of simulation levels of detail.    

4.1 Branch Simplification 

At the heart of the simulation level of detail process are 
the local and global methods of branch simplification.  We 
use two operators on the simulation structure, similar to 
vertex decimation and vertex combinations used for 
geometric levels of detail.  The first is parent/child 
combination.  Parent branches with only one terminal child 
branch can be combined to form a single simplified branch.  
The second operator is child/child combination.  Here all 
terminal children of a branch are simplified to form one 
new (terminal) child branch.  The global simplification 
scheme requires branches to simplify from the tip to the 
root of the tree hence both operators require that all child 
branches be terminal.  Figure 2 shows an example of the 
operators. 

Using either of the operators requires that new simplified 
branches be created.  In parent/child combinations the 
process involves creating a single terminating branch with a 
leaf area that matches the original.  Given the approximate 
amplitude and frequency of the parent/child segment, the 

Figure 2. An overview of the SLODs Constructed for a simple tree-like structure.  The “given” 
structure at each stage is shown in solid line, and the simplified structure is shown in dashed line.   



 
 

 

lookup table created previously can be used to search for 
the best single branch parameters (bend strength, and leaf 
area) that match that amplitude and frequency. That is, we 
fix the length of the new branch, and determine a new leaf 
area and bend strength that will closely match the 
frequency and amplitude of the original pair of branches.  
Figure 3 (top) illustrates this combination. 

Child/child combinations are more difficult. Parameters 
cannot be directly acquired from the lookup table. The 
simulation parameters of the children are combined to 
determine the leaf area, bend strength, and position 
(including length) of the simplified branch.  Leaf areas and 
length/position are averaged.  The bend strengths are 
determined by a length-weighted average among the 
children branches.  Note that the error introduced in these 
child/child simplifications is often significantly more than 
for parent/child combinations (see section 4.3 below).  
Figure 3(bottom) illustrates this combination. 

The force propagated down from a simplified branch 

must also be modified to make it match that of the branches 
it replaced.  We store a SLOD “propagation factor” (pf) for 
each simplified branch separately from the original pf, 
which is directly derived from bend strengths. When 
branches are combined to form a new simplified branch, 
the amount of force passed down to the parents must 
remain the same. A simplified branch from a child/child 
combination will pass down a force scaled by the original 
pf’s, taking into account the number of children it replaced. 
This gives a pf equal to the sum of the pf’s of the children, 
multiplied by the original pf. A simplified branch from a 
parent/child combination has a pf given by the product of 
the child’s pf with the parent’s original pf. 

4.2 Lookup Table Generation 

These simulations are performed one time only (not once 
per plant), and the data is stored for all future 
simplifications. We thus generate a table, indexed by leaf 
area and bend strength, that lets us look up single segments 
with similar amplitude/frequency characteristics for a given 
pair of segments. This information is used later for 
determining simplified branches and errors. Since we 
bound our error under maximal wind force conditions, our 
error, at least in amplitude, will be even smaller under less 
force.  Although average frequency might vary under 
different wind conditions, this is not as wide a variation, 
nor is it as noticeable. 
 To save time in this process, we first generate lookup 
tables based on simulations of varied segments.  The 
lookup tables allow us to closely match a simplified branch 
and leaf to a parent/child branch and leaf.  We simulate 
each combination of a single segment with a single leaf and 
pairs of branches (one parent, one child, with one leaf) with 
varying bend strengths and leaf areas. We sample 50 
increments of bend strength, and 50 increments of leaf 
areas. This yields 2500 simulations for branch/leaf and 
125,000 simulations for parent/child/leaf. For each 
simulation, we apply a steady wind force that is fixed as the 
maximum possible wind force in subsequent simulations. 
Such simple segments behave as damped oscillators. For 
each simulation, we determine (and store) the maximum 
amplitude and the average frequency (period) of the 
oscillation.    

4.3 Error Measurements 

Error calculations are the last step of the pre-computation 
stage.  Basically, for each simplified LOD, we need to have 
a measurement of how much error is incurred in the 
simulation by using the simplified structure in place of the 
original.  Each of the operators has its own error function. 
Note that we must accumulate errors as we move through 
multiple SLODs from leaves to root.  
 The choice of error metric is somewhat dependent on the 
goals of the simulation.  We have chosen a error involving 
world space distance between the tips of their branches and 
their maximum amplitudes. A metric including information 
such as frequency of oscillation, could also be incorporated.  
However, we believe the amplitude error on its own is a 
good metric since it is directly related to the screen space 
error measured in terms of pixels, which is in turn directly 
related to the distance of the viewer from the simulation.  
That is, we have a direct relationship between error and 
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Figure 4.  Error computation for 
parent/child combinations as a function 
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Figure 3. The parent/child (top) and 
child/child (bottom) combinations.  At left is 
original data, at right is the simplified data.  
The thick structures show the geometry, the 
black lines the simulation structure. 



 
 

 

distance, using a simpler and simpler level as we move 
farther away.  Furthermore, we take frequency into account 
when determining which simulation parameters to use for 
the simplified branch (otherwise, we could just match 
amplitude precisely). Variations in frequency intuitively 
seem less important than amplitude variations, however, a 
more involved user study involving perceptual issues (e.g. 
as in [ODG*03]) would be needed. 

Parent/child error is straightforward—we know the 
difference in amplitude directly from the lookup tables 
(modified by the segment length). Figure 4 illustrates this 
process. 

Child/child combinations need extra attention. Since one 
child branch is replacing several children, the error must 
account for the maximum possible deviation between any 
two children. Child branches can oscillate out of phase and 
in opposite directions from each other. Thus, we set the 
error as follows: Let MO be the maximum amplitude of any 
of the child branches, MS be the maximum amplitude of 
the simplified branch.  Then the maximum possible error 
(difference in the simplified position of any point from the 
original) is 2MO-MS. The error bound thus obtained is an 
average over time, but is also very conservative (we are 
extremely unlikely to have branches moving in opposite 
directions like that).   Figure 5 illustrates this further. 
 Calculating the screen space error at every step for every 
branch is costly so we usually specify ahead of time a 
maximum error.  This error is often one pixel (very 
restrictive) though if we desire more rapid progression to 
lower levels of detail, more error can be allowed—the 
examples presented below allow 7 pixels to better show off 
the effects.  Given camera parameters, the distance to the 
camera at which the error is exactly one pixel is stored in 
the simplified branch and can be quickly checked at run-
time.  Thus each SLOD links directly to distance from the 
camera.   

5 Using Simulation LODs 

At run-time, the tree is traversed and simplified branches 
are substituted into the simulation structure. 

5.1 Run-Time Error Bounds 

As previously described, the error associated with each 
simulation level of detail has already been calculated.  It is 
stored as the distance to the camera in which it is 
acceptable, using the predefined simulation error of one 
pixel, to use the simplified branch in place of the original.  
Note that it is easy to imagine other means of determining 
acceptable error bounds besides distance.  For example, 
distance outside the view frustum or from a point of focus 
might be included.  Although we focus on distance to the 
camera, this is not a fundamental limitation of the 
approach. 
 Traversing the tree at any branch involves several steps.  
If the parent has more than one child, the combined 
children simplification branch must be considered first.  If 
it passes (i.e. the error in that branch is less than the limit) 
the rest of the tree is represented by this branch.  If it fails, 
the individual children nodes must be examined 
recursively.  If a child is not terminal, the child/parent 
combination must be considered.  Again, if the simplified 
branch passes, then no further work needs to be done, 
otherwise you use the parent in the simulation and 
recursively examine the child. 

5.2 Transitioning between LODs 

In order to prevent “popping” a smooth transition must 
occur when switching from the original branches to the 
simplified ones.  The opposite direction is less problematic 
– replacing a single branch in the simulation with more 
than one branch merely entails initializing the new 
branches with the state information (such as current 
position/orientation/velocity) from the simplified branch. 

To describe the transitions, we will describe an idealized 
situation, however other transitions follow 
straightforwardly.  Assume that the original tree is at the 
highest level of detail at the minimum camera distance, 0. 
At some distance D the first simplified branch replaces 
some number of branches.   We thus want to make a 
smooth transition, from the original simulation set at 
distance 0, to the first level simplification at distance D.  At 
the distance D, the original branches must be behaving in 
the same way as the simplified branch. 

In the case of a parent/child combination we can make 
this transition smoothly by interpolating between the key 
properties: 
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Figure 5.  Error measurement for child/child 
combinations. The maximum amplitude 
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branches (top) are determined as in the 
middle.  Note that children branches can vary 
independently (bottom). 
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 At distance D the parent branch and leaf should behave 
just as the simplified branch and leaf.  The child branch 
should have no angle offset and no angular velocity relative 
to the parent.  At distance D the current position and 
velocity of the parent branch are transferred to the 
simplified branch. 
 For the children combination such an interpolation 
approach is not possible.  Instead, we transition by 
beginning early simulation of the simplified branch.  At 
distance 0, the simplified branch will be simulated but not 
processed for rendering.  From 0 to D the angle offset of 
the child branches will be an interpolation of their natural 
offset and the offset of the simplified branch.  At the 
distance D the simplified branch can now be simulated and 
processed for rendering in place of the original branches. 
 Note that although the inverse transition is less 
problematic, we can have a more cohesive implementation 
by using this linear interpolation approach in both 
directions.  Thus, moving from a simplified branch toward 
original branches just interpolates in the other direction. 
 Also note that if there is rapid motion in the program, we 
may encounter a problem where we would normally 
transition between several LODs within a couple of frames.  
Since this could lead to awkward transition effects, we 
incorporate hysteresis in the system by forcing transitions 
from one LOD to another to take place over several frames. 

5.3 Combining Simulation and Geometric LODs 

Because our SLOD method affects only the simulation 
structure of the plant, the geometric rendering can be 
handled as a separate issue.  Since the situations where we 
desire SLODs are often those where geometric LODs are 
also useful, the combination of these two methods is thus of 
interest. It would be unfortunate if geometric LODs had to 
be tied directly to simulation LODs.  Optimal geometric 
LODs might be significantly different from the combined 
branches in our SLODs. Fortunately, we can treat these two 
somewhat independently. Note that our current 
implementation does not incorporate geometric LODs – we 
present this to highlight the issue. 
 Usually, the geometric LOD and the simulation LOD are 
closely tied together at the most detailed level (usually the 
simulation is based on the geometric information).  As the 
two LOD approaches diverge, however, we need to be able 
to map from the simulation structure to the geometric 
structure in order to determine what needs to be drawn on 
screen.  This is relatively easily handled, though at a cost of 
greater storage overhead, and some additional run-time 
computation. 
 Basically, each geometric primitive must be able to 
update its position from the simulation structure.  If we 
consider the most detailed geometric level, it is easy to 
determine a new position for each point based on any 
simplified geometric structure.  The unsimplified regions of 
the model have a clear correspondence, and the simplified 
portions can be derived directly from the orientation 

information of the simplified branch (treating the geometry 
from that point on as static).   

The key, then, is to relate the simplified geometric LOD 
to the original geometric mesh.  This will likely involve 
some additional storage overhead, and some additional run-
time computation, such as averaging between points in the 
original mesh.  Nevertheless, it offers an opportunity for 
the geometric LOD to be dealt with independently.  

6 Implementation and Results 

The method that we have described here has been 
implemented in C, and tested on an AMD Athlon 2700 
with 512 MB of RAM and a GeForce Ti 4200 video card.  
Our implementation allows for the description of a general 
L-system, with parameters allowing us to define both 
tree/plant shape and bend strengths.  Our system is general, 
allowing us to bypass the L-system description if desired; 
e.g. we can (and did) adapt the parameters of Weber and 
Penn [WP95] to model specific species of trees. 
 Figures 1, 5 and 6 demonstrate that our approach is an 
effective method for achieving faster overall simulation 
while minimizing the visible error in simulation.  In 
addition, the supplemental video demonstrates our 
approach in action. 

 As far as timings, we first need to emphasize that 
plant/tree motion simulations can vary from the very simple 
to the very complex.  Regardless of the simulation method 
used, it is possible to give enough trees with enough 
complexity with the right view to make the simulation run 
slower than any given speed (or conversely, to introduce 
more error at a fixed speed).  Likewise, if simple enough 
plants are used, any method will seem fast.  For this reason, 
we discuss our SLOD method in terms of the relative 
reduction in the total amount of simulation required—this 
should directly reflect performance improvement, 
regardless of the system described.  
 To give some sense of the timings, and the speedups 
obtained through our method, refer to Figure 6.  As can be 
seen there, the use of SLODs allows significant 
improvements in the simulation frame rates achieved. 
 Using SLODs does entail additional storage cost.  In 
effect, each branch (or cluster of branches) must store the 
parameters for a simplified branch anchored at that 
location. The total amount of storage required for the 
SLODs, though, is less than the amount of original data – 

Figure 6. Tree height needed to maintain one 
pixel error. 
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i.e. an SLOD-enhanced tree uses less than twice the storage 
of the original tree. This does not include space for the 
lookup tables, which are not associated with any single 
plant and are not used at run-time. 

7 Conclusion and Future Work 

We have presented a method for computing and using 
simulation levels of detail in the simulation of plant motion.  
Our method allows us to precompute SLODs with 
guaranteed error bounds.  At run-time, we can create 
smooth transitions between LODs to achieve faster 
simulation times, with guaranteed bounds on the error. 

7.1 Comparison with Other Methods 

We briefly compare our method with some of the more 
prominent prior methods.  Sakaguchi and Ohya provide a 
more detailed model of motion than we use, however they 
provide no SLOD-like improvements [SO99]. The work of 
Perbet and Cani [PC01], while certainly implementing a 
SLOD approach, is limited to the motion of simple grass.  
Similarly, the level of detail provided in the work of Endo 
et al. is geared toward less complex plants, and does not 
support very complex LODs [EMS03]. 
 Our work is perhaps most similar to that of Di Giacomo 
et al. [DCF01].  Both approaches use a similar physical 
motion model, use a blend between LODs, allow for 
multiple LODs in the same tree, and use a “branch to root” 
simplification method.  There are several major differences, 
however. We obtain a hierarchical physically-based 
simulation, whereas they switch from a single physical 
simulation to procedural (and then to static). We maintain 
an error measurement for the simplification, giving more 
rigorous control of the error introduced. Finally, by 
gradually degrading our physical simulation (as opposed to 
swapping with a procedural animation) we allow the 
simulation state to blend over time more smoothly. 

7.2 Future Work 

  Our method is actually very modular—we can substitute a 
different motion simulator, error metric, or structure 
generator without affecting the fundamental idea.  This 
leaves a number of avenues open for future work. 
• The motion model we have implemented assumes 

spring-connected rigid bodies.  We may be able to 
achieve better motion results by modeling branch 
segments as oscillating flexible rods.   

• Error computation in our method is conservative.  It 
may be that by considering relationships between 
errors, we can achieve greater simplification without 
introducing noticeable simulation changes.   

• As stated before, we can take wind effects directly on 
branches into account in our motion simulator, but 
this is not currently incorporated into our 
simplification scheme.   

• Exploration of different error metrics and methods 
for setting error bounds would be interesting. 

• We do not incorporate collision detection into our 
current approach.  On complex trees, this may be too 
computationally intensive, but is worth exploring. 

• We do not include procedural animation as an option 
in our current simulation, however we see no 

fundamental reason it could not be included in a 
similar manner as Di Giacomo et al. [DCF01]. 

References 

[Ber97] Berka, R.: Reduction of Computations in 
Physics-Based Animation Using Level of 
Detail.  13th Spring Conference on Computer 
Graphics, ed. Wolfgang Strasser (1997). 
pp.69-76. 

[Blo85] Bertails, F., Kim, T-Y., Cani,, M-P., 
Neumann, U.:  Adaptive Wisp Tree: A 
Multiresolution Control Structure for 
Simulating Dynamic Clustering in Hair 
Motion. Proc of the 2003 ACM  
SIGGPRAH/Eurographcis Symposium on 
Computer Animation (2003). pp. 207-213.  

[Blo85] Bloomenthal, J.:  Modeling the Mighty 
Maple.  Proceedings of ACM SIGGRAPH, 
(1985).  

[CH97] Carlson, D., Hodgins, J.: Simulation Levels 
of Detail for Real-Time Animation.  Proc. of 
Graphics Interface (1997). 

[CAF01] Chenney, S., Arikan, O., Forsyth, D.: Proxy 
Simulations for Efficient Dynamics.  Proc. of 
Eurographics 2001, Short Presentations, 
(2001). 

[CIF99] Chenney, S., Ichnowski, J., Forsyth, D.: 
Dynamics Modeling and Culling.  IEEE 
Computer Graphics and Applications 
(March/April 1999), pp. 79-87. 

[CF97]  Chenney, S., Forsyth, D.: View Dependent 
Culling of Dynamic Systems in Virtual 
Environments.  Proc. of Symposium on 
Interactive 3D Graphics. (1997), pp. 55-58. 

[DCS*02] Deussen, O., Colditz, C., Stamminger, M., 
Drettakis, G.: Interactive visualization of 
Complex Plant Ecosystems. Proc. of 
conference on Visualization ’02 (2002) pp. 
219-226. 

[DHL*98] Deussen, O., Hanrahan, P., Lintermann, B., 
Mech, R. Pharr, M. Prusinkiewicz, P.: 
Realistic Modeling and Rendering of Plant 
Ecosystems.  Proc. of SIGGRAPH ’98 (1998) 
pp. 275-286. 

[DCF01] Di Giacomo, T., Capo, S., Faure, F.: An 
Interactive Forest.  Proc. of Eurographics 
Workshop on Computer Animation and 
Simulation (2001), pp. 65-74. 

[DO01] Dingliana, J.,  O’Sullivan, C.: Levels of detail 
in physically based real-time animation. 
ERCIM News (special issue on Computer 
Graphics and Visualization), No. 44. 
(January 2001). 

[EMF03] Endo, L., Morimoto, C., Fabris, A.: Real-time 
Animation of Underbrush. Proc. of 11th 



 
 

 
International Conference in Central Europe 
on Computer Graphics, Visualization, and 
Computer Vision (2003). 

[OFL01] O'Brien, D., Fisher, S., Lin, M.: Automatic 
Simplification of Particle System Dynamics. 
Proc. of IEEE International Conference on 
Computer Animation (2001), pp. 210-219. 

[ODG*03] O’Sullivan, C., Dingliana, J., Giang, T., 
Kaiser, M.: Evaluating the Visual Fidelity of 
Physically-Based Animations.  ACM 
Transactions on Graphics (Proceedings of 
Siggraph 2003), (August 2003), vol. 22, no. 
3, pp.  

[Ono97] Ono, H: Practical experience in the physical 
animation and destruction of trees. 
Eurographics Workshop on Animation and 
Simulation (1997), pp. 149-159. 

[PC01]  Perbet, F., Cani, M.: Animating Praries in 
Real-Time. Proc. of ACM Symposium on 
Interactive 3D Graphics (2001). 

[PL90]  Prusinkiewicz, P., Lindenmayer, A.: The 
Algorithmic Beauty of Plants. Springer-
Verlag, 1990. 

[SO99]  Sakaguchi, T., Ohya, J.: Modeling and 
Animation of Botanical Trees for Interactive 

Virtual Environments.  Proc. of Symposium 
on Virtual Reality Software and Technology 
(1999), pp 139-146. 

[SF92]  Shinya, M., Fournier, A.: Stochastic Motion 
– Motion Under the Influence of Wind.  Proc. 
of Eurographics (1992), vol. 11, no. 3 pp. 
119-128. 

[Sta97]  Stam, J.: Stochastic Dynamics: Simulating 
the Effects of Turbulence on Flexible 
Structures. Proc. of Eurographics (1997), vol. 
16, no. 3, pp. C159-C164. 

[WLL*03] Ward, K., Lin, M., Lee, J., Fisher, S., Macri, 
D.: Modeling Hair Using Level-of-Detail 
Representations.  Proc. Of Computer 
Animation and Social Agents (2003). 

[WP95] Weber, J., Penn, J.:  1995.  Creation and 
Rendering of Realistic Trees.  Proc. of the 
22nd Annual Conference on Computer 
Graphics and Interactive Techniques 
(SIGGRAPH ’95) (1995), pp. 119-128. 

[WZF*03] Wei, X., Zhao, Y., Fan, Z., Li, W. Yoakum-
Stover, S. Kaufman, A.: Blowing in the 
Wind. Proc. of Symposium on Computer 
Animation (2003).  pp. 75-85. 

 

Figure 7.  Multiple simulation LODs generated for a tree.  The original tree had 77,141 branches and 
simulated at 2 fps.  The SLODs shown here (left to right): 25,434 branches, 6 fps; 12,761 branches, 10 
fps; 5654 branches, 21 fps; 1709 branches, 62 fps; 714 branches, 81 fps, 110 branches, 85 fps.  

Figure 8.  A sequence of  tree motion (left to right).  The last image shows the simulation structure.  
Note that at this distance, the difference in simulated appearance between the two trees is minor, 
though the lower LOD is much faster.    


