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Bodies intersect → classify contacts

• Bodies separating
– vrel > ε

– No response required

• Colliding contact 
– vrel < -ε

• Resting contact 
– -ε < vrel < ε

– Gradual contact forces avoid interpenetration
– All resting contact forces must be computed and 

applied together because they can influence one 
another
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Resting Contact Response
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Handling of Resting Contact

• Resting contact is a constraint!
– Local vs. global methods
– Impulse-based solution methods
– Constraint-based solution methods

• Friction
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Local vs. Global

• Impulse-based dynamics (local)

• Constraint-based dynamics (global)
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Impulse vs. Constraint

• Impulse-based dynamics (local)
– Faster
– Simpler
– No explicit contact constraints

• Constraint-based dynamics (global)
– Must declare each contact to be a resting 

contact or a colliding contact
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Impulse vs. Constraint
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Resting Contact Response

At each contact:
• Apply normal force
• All forces computed simultaneously → linear system
• Forces subject to three conditions (see next slide)
• Define separation function di(t)

normal

scalar 
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Resting Contact Response

• The forces at each contact must satisfy 
three criteria
– Prevent inter-penetration: 
– Repulsive -- we do not want the objects 

to be glued together:
– Should become zero when the bodies start 

to separate (orthogonality): 

• To implement hinges and pin joints:
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Resting Contact Response

• We can formulate using LCP:
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Linear Complimentary Problem 
(LCP)

• Need to solve a quadratic program to 
solve for the fi’s
– General LCP is NP-complete problem
– A is symmetric positive semi-definite (SPD) 

making the solution practically possible

• There is an iterative method to solve for 
without using a quadratic program 

[Baraff, Fast contact force computation for nonpenetrating rigid bodies ]

[Erin Catto, Sequential impulses]
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Linear Complimentary Problem 
(LCP)

• In general, LCP can be solved with 
either:
– pivoting algos (like Gauss elimination)

• they change the matrix
• do not provide useful intermediate result
• may exploit sparsity well

– iterative algos (like Conjugate Gradients)
• only need read access to matrix
• can stop early for approximate solution
• faster for large matrices
• can be warm started (ie. from previous result)

Slide courtesy of Moravanszky (ETHZ 2002)
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Global vs. local?

• Global LCP formulation can work for 
either constraint-based forces or with 
impulses
– Hard problem to solve
– System very often ill-conditioned, iterative 

LCP solver slow to converge
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Local vs. Global

• Impulses often applied in local contact 
resolution scheme

• Applied impulses can break non-penetration 
constraint for other contacting points

• Often applied iteratively, until all resting 
contacts are resolved
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Hard case for local approach

• Prioritize contact points along major 
axes of acceleration (gravity) and 
velocity
– Performance improvement: 

25% on scene with 60 stacked objects
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Frictional Forces Extension

• Constraint-based dynamics
– Reformulate constraints and solve
– This is an advantage for constraint-based 

dynamics!

• Impulse-based dynamics
– Must not add energy to the system in the 

presence of friction
– We will integrate work performed by 

contact impulses to track energy change 
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Collision Coordinate System

• p is the 
applied 
impulse.  We 
use j 
because P is 
for linear 
momentum
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Impulse Reformulation
• When two real bodies collide there is a period 

of deformation during which elastic energy is 
stored in the bodies followed by a period of 
restitution during which some of this energy 
is returned as kinetic energy and the bodies 
rebound of  each other.
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Impulse Reformulation

 The collision is instantaneous but we can 
assume that it occurs over a very small 
period of time: 0  tmc  tf.

 tmc is the time of maximum compression

vz is the relative 
normal velocity.  

vz
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Impulse Reformulation

  jz is the 
impulse 
magnitude in 
the normal 
direction.  

 Wz is the work 
done in the 
normal 
direction.

jz
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Impulse Reformulation (I)

• Newton’s Empirical Impact Law:
Coefficient of restitution ε relates before-collision to 

after-collision relative velocity

• Poisson’s Hypothesis:
 The normal component of impulse delivered during 

restitution phase is ε times the normal component of 
impulse delivered during the compression phase

Both these hypotheses can cause increase of 
energy when friction is present!
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Impulse Reformulation (II)
• Stronge’s Hypothesis:
The positive work done during the restitution 

phase is -ε2 times the negative work done 
during compression

Energy of the bodies does not increase when 
friction present

W+
z −W 0

z = −ε2W 0
z

W+
z = (1− ε2)W 0

z
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Coulomb Friction model

• Sliding (dynamic) friction

• Dry (static) friction

  (i.e. the friction cone)
• Assume no rolling friction

z

vt

v

ft

fn

vt = 0 ⇒ ft ≤ µ‖fn‖

vt != 0 ⇒ ft = −µ‖fn‖
vt

‖vt‖
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Impulse with Friction

• Recall that the impulse looked like this for 
frictionless collisions:

• Remember: pz(t) = j(t) 

• Recall also that Δvz = j/M and ΔL = r×jTn

• All are parameterized by time
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Impulse with Friction

where:
 r = (p-x) is the vector from the center of 

 mass to the contact point

∆vt =
[(

1
m1

+
1
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)
I− (r!
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2)
]
j(t) = Kj(t)∆vt = Kj(t)
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The K Matrix

• K is constant over the course of the 
collision, nonsingular, symmetric, and 
positive definite
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Collision Functions
 We assume collision to occur over zero time 

interval → velocities discontinuous over time
 Discontinuities bad for integration!

 Reparameterize Δv(t) = K j(t) from t to γ 
 Take γ such that it is monotonically increasing 

during the collision:  
 Let the duration of the collision  0.
 The functions v, j, W, all evolve continuously 

over the compression and the restitution phases 
with respect to γ.

∆v(γ) = Kj(γ)



• For the compression 
phase, use γ = vz

– vz is the relative normal 
velocity at the start of the 
collision (we know this)

– At the end of the 
compression phase, vz

0=0

• For the restitution 
phase, use γ = Wz

– Wz
0 is the amount of work 

that has been done in the 
compression phase

– From Stronge’s hypothesis, 
we know that 

W+
z = (1− ε2)W 0

z
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Sliding Formulation
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Resting Contacts with 
Impulses

• Modeled by artificial train of collisions
• The resulting collision impulses model a constant 

reaction force (doesn’t work for stationary objects)
• Problem: book on table: through collisions, energy 

steadily decreases, book sinks into table
• #of collisions increases, simulator comes to grinding 

halt!
• Introduce micro-collisions 

– Micro-collision impulses are not computed in the standard way, 
but with artificial coefficient of restitution e(δ)

– Applied only if normal velocity is ‘small’
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Artificial restitution for 
• e = f( Distance(A,B) )
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Micro-collisions issues

• Other problems arise:
– Boosted elasticity from micro-collisions makes box 

on ramp ‘bounce’ as if ramp were vibrating
– Stacked books cause too many collision impulses, 

propagated up and down the stack
– Weight of pile of books causes deep penetration 

between table and bottom book → large reaction 
impulses cause instabilities

• Micro-collisions are an ad-hoc solution!
• Constrained-based approaches are a better 

solution for these situations




