CMSC 330: Organization of
Programming Languages

More Ruby:
Methods, Classes, Arrays, Hashes

CMSC 330 - Fall 2020

In Ruby, everything is an Object

» Ruby is object-oriented

» All values are (references to) objects
* Java/C/C++ distinguish primitives from objects

» Objects communicate via method calls
» Each object has its own (private) state

» Every object is an instance of a class

* An object’s class determines its behavior:

* The class contains method and field definitions
» Both instance fields and per-class (“static”) fields

CMSC 330 - Fall 2020

Everything is an Object

» Examples
o (-4).abs & No-argument instance method of Fixnum

> integers are instances of class Fixnum
3+4
> infix notation for “invoke the + method of 3 on argument 4”
* "programming".length
» strings are instances of String

e String.new
» classes are objects with a new method

4.13.class

> use the class method to get the class for an object
» floating point numbers are instances of Float

CMSC 330 - Fall 2020

Ruby Classes

» Class names begin with an uppercase letter

» The new method creates an object

* s = String.new creates a new String and makes s
refer to it

» Every class inherits from Object

CMSC 330 - Fall 2020

Objects and Classes

» Objects are data
» Classes are types (the kind of data which things are)
» Classes are also objects

Object Class (aka type)
10 Integer
-3.30 Float
"CMSC 330" String
String.new String
[a’, 'b’, ‘C’] Array
Integer Class

» Integer, Float, and String are objects of type Class
* Sois Class itself!

CMSC 330 - Fall 2020

Two Cool Things to Do with Classes

» Since classes are objects, you can manipulate
them however you like

if p then
* Here, the type of y depends on p x = String
> Either a String or a Time object else
X = Time
End

Yy = x.new

» You can get names of all the methods of a class
* Object.methods

» =>["send", "name", "class_eval", "object _id", "new",
"autoload?", "singleton_methods", ...]

CMSC 330 - Fall 2020

Creating Strings in Ruby (cont.)

» Ruby has printf and sprintf
* printf("Hello, %s\n", name);
* sprintf("%d: %s", count, Time.now)

> Returns a String

» to_s returns a String representation of an object

* Can be invoked implicitly — write puts(p) instead of
puts(p.to_s)
> Like Java’s toString()

» Inspect converts any object to a string
irb(main):033:0> p.inspect
=> "#<Point:0x54574 @y=4, @x=7>"

CMSC 330 - Fall 2020

Symbols

» Ruby symbols begin with a colon
* :foo, :baz_42, :"Any string at all"
» Symbols are “interned” Strings

* The same symbol is at the same physical address
* Can be compared with physical equality

“foo” == “foo” # true
“foo” .equal? “foo” # false
:foo == :foo # true
:foo.equal :foo # true

» Are symbols worth it? Probably not...

CMSC 330 - Fall 2020

The nil Object

» Ruby uses nil (not null)

* All uninitialized fields set to nil (@ prefix used for fields)
irb(main):004:0> @x
=> nil

» Nil is an object of class NilClass

* Unlike null in Java, which is a non-object

* nil is a singleton object — there is only one instance of it
> NilClass does not have a new method

* nil has methods like to_s, but not other methods
irb(main):006:0> nil + 2
NoMethodError: undefined method "+' for nil:NilClass

CMSC 330 - Fall 2020 11

Quiz 1

» What is the type of variable x at the end of the

following program? b = nil
x = 3
if p then
x = “hello”
A Integer else
X = nil
8. NilClass end

c. String
p. Nothing — there’s a type error

CMSC 330 - Fall 2020

Quiz 1

» What is the type of variable x at the end of the
following program?

p = nil

x =3

if p then

x = “hello”

A Integer else
B. NilClass x = nil

end
c. String

p. Nothing — there’s a type error

CMSC 330 - Fall 2020

13

Arrays and Hashes

» Ruby data structures are typically constructed
from Arrays and Hashes
* Built-in syntax for both
* Each has a rich set of standard library methods

* They are integrated/used by methods of other
classes

CMSC 330 - Fall 2020

14

Array

» Arrays of objects are instances of class Array
* Arrays may be heterogeneous
a =1, "foo", 2.14]
» C-like syntax for accessing elements
* indexed from O

* return nil if no element at given index
irb(main):001:0> b = []; b[0] = 0; b[0]
=> ()
irb(main):002:0> b[1] # no element at this index
=>nil

CMSC 330 - Fall 2020 15

Arrays Grow and Shrink

» Arrays are growable

* Increase in size automatically as you access
elements
irb(main):001:0> b = []; b[0] = O0; b[5] = 0; b
=> [0, nil, nil, nil, nil, 0]

* []is the empty array, same as Array.new

» Arrays can also shrink
* Contents shift left when you delete elements

a=1[1,2,3,4,5]
a.delete_at(3) # delete at position 3; a =[1,2,3,5]
a.delete(2) # delete element = 2; a = [1,3,5]

CMSC 330 - Fall 2020 16

Iterating Through Arrays

» It's easy to iterate over an array with while
* length method returns array’s current length

a=1[1,2,3,4,5]

i=20

while i1 < a.length
puts a[i]
i=1+1

end

» Looping through elements of an array is common
* We'll see a better way soon, using code blocks

CMSC 330 - Fall 2020 17

Arrays as Stacks and Queues

» Arrays can model stacks and queues

a=[1, 2, 3]
a.pLISh("a") # q = [1, 2, 3, uau]
X = apop # X = uan

a.unshift("b") #a=["b", 1, 2, 3]
y = a.shift #y="b"

Note that push, pop,
shift, and unshift
all permanently
modify the array

CMSC 330 - Fall 2020

Hash

» A hash acts like an associative array

* Elements can be indexed by any kind of value

* Every Ruby object can be used as a hash key,
because the Object class has a hash method

» Elements are referred to like array elements
italy = Hash.new
italy["population"] = 58103033
italy["continent"] = "europe"
italy[1861] = "independence”
pop = italy[“population”] # pop is 58103033
planet = italy[“planet”] # planet is nil

CMSC 330 - Fall 2020

19

Hash methods

» new(o0) returns hash whose default value is o
* h =Hash.new(“fish”); h[‘go”] # returns “fish”
» values returns array of a hash’s values
» Keys returns an array of a hash’s keys
» delete(k) deletes mapping with key k
» has key?(k) is true if mapping with key k present

* has_value?(v) is similar

CMSC 330 - Fall 2020 20

Hash creation

Convenient syntax for creating literal hashes
* Use { key => value, ... } to create hash table

credits = {
"cmscl31l" => 4,
"cmsc330" => 3,

}

X = credits["cmsc330"] # x now 3
credits["cmsc311"] = 3

* Use {} for the empty hash

CMSC 330 - Fall 2020

Quiz 2: What is the output?

a = {“foo” => “bar”}
a[0] = "baz”

print a[l]

print a[“foo”]

A, Error
B. bar
c. bazbar

p. baznilbar

CMSC 330 - Fall 2020

22

Quiz 2: What is the output?

a = {“foo” => “bar”}
a[0] = "baz”

print a[l]

print a[“foo”]

A, Error
B. bar
c. bazbar

p. baznilbar

CMSC 330 - Fall 2020

23

Quiz 3: What is the output?

a = { “Yellow” => [] }

a[“"Yellow”] = {}

a[“Yellow”] [YRed”] = [“Green”, "“Blue”]
print a[“Yellow”] ["Red”] [1]

A Green

B. (nhothing)
c. Blue

p. Error

CMSC 330 - Fall 2020 24

Quiz 3: What is the output?

a = { “Yellow” => [] }

a[“"Yellow”] = {}

a[“"Yellow”] [YRed”] = [“Green”, "“Blue”]
print a[“Yellow”] ["Red”] [1]

A Green

B. (nothing)
c. Blue

p. Error

CMSC 330 - Fall 2020 25

Quiz 4: What is the output?

a=[1,2,3]
a[l] = 0
a.shift
print a[l]

A Error

B. 2

c. 3

CMSC 330 - Fall 2020

Quiz 4: What is the output?

a=[1,2,3]
a[l] = 0
a.shift
print a[l]

A Error

B. 2

c. 3

CMSC 330 - Fall 2020

Defining Your Own Classes

class Point
def initialize(x, y)
@x

Qy
end

class name is uppercast

X
y

constructor definition

def add x(x) instance variables prefixed with “@”

@x += x
- / method with no arguments
def to_s
return "(" + @x.to s + "," + @y.to. s + ")"
end
end

/ instantiation
p = Point.new (3, 4)

p.add x(4)
puts (p.to_s) &
CMSC 330 - Fall 2020

iInvoking no-arg method

Methods in Ruby

Note: Methods need
not be part of a class

List parameters

Methods are declared with def...end

/ at definition

def sayN(message,‘n)

i=20
while i < n

puts message‘ék”’
i=1i+1
end

return i
end

x = sayN("hello", 3)

_ May omit parens
on call

_~Invoke method

—L ike print, but

puts (x) &

Adds newline

Methods should begin with lowercase letter and be defined before they are called
Variable names that begin with uppercase letter are constants (only assigned once)

CMSC 330 - Fall 2020

29

Methods: Terminology

» Formal parameters

* Variable parameters used in the method
* def sayN(message, n) in our example

» Actual arguments

* Values passed in to the method at a call
* x =sayN("hello", 3) in our example

» Top-level methods are “global”

* Not part of a class. sayN is a top-level method.

CMSC 330 - Fall 2020

30

Method Return Values

» Value of the return is the value of the last
executed statement in the method
e These are the same:

def add three (x) def add three (x)
return x+3 x+3
end end

» Methods can return multiple results (as an
Array)

def dup (x)
return x,x
end

CMSC 330 - Fall 2020

Method naming style

» Names of methods that return true or false
should end in ?

» Names of methods that modify an object’s state
should end in !

» Example: suppose x = [3,1,2] (this is an array)
 x. member? 3returns true since 3 is in the array x
 x.sort returns a new array that is sorted
 x.sort! modifies x in place

CMSC 330 - Fall 2020 32

No Outside Access To Internal State

» An object’s instance variables (with @) can be
directly accessed only by instance methods

» Outside class, they require accessors:

A typical getter A typical setter
def x def x= (value)

@x @x = wvalue
end end

» Very common, so Ruby provides a shortcut

class ClassWithXandyY Says to generate the
attr_accessor :x, :yg x=and x and
end y=and y methods

CMSC 330 - Fall 2020 33

No Method Overloading in Ruby

» Thus there can only be one initialize method

* A typical Java class might have two or more
constructors

» No overloading of methods in general

* You can code up your own overloading by using a
variable number of arguments, and checking at run-
time the number/types of arguments

» Ruby does issue an exception or warning if a
class defines more than one initialize method
e But last initialize method defined is the valid one

CMSC 330 - Fall 2020 34

Quiz 5: What is the output?

class Dog
def smell (thing)
"I smelled #{thing}
end
def smell (thing,dur)
"#{smell (thing)} for #{dur} seconds”
end
end
fido = Dog.new
puts fido.smell (”“Alice”, 3)

A. | smelled Alice for nil seconds
8. | smelled #{thing}

c. | smelled Alice

p. Error

CMSC 330 - Fall 2020

35

Quiz 5: What is the output?

class Dog
def smell (thing)
"I smelled #{thing}
end
def smell (thing,dur)
"#{smell (thing)} for #{dur} seconds”
end
end
fido = Dog.new
puts fido.smell (”“Alice”, 3)

A. | smelled Alice for nil seconds
8. | smelled #{thing}

c. | smelled Alice
D

Error — call from Dog expected two

CMSC 330 - Fall 2020 args

36

Quiz 6: What is the output?

class Dog
def smell (thing)
"I smelled #{thing}
end
def smelltime (thing,dur)
"#{smell (thing)} for #{dur} seconds”
end
end
fido = Dog.new
puts fido.smelltime (”“Alice”, 3)

A. | smelled Alice for seconds

8. | smelled #{thing} for #{dur} seconds
c. | smelled Alice for 3 seconds

p. Error

CMSC 330 - Fall 2020 37

Quiz 6: What is the output?

class Dog
def smell (thing)
"I smelled #{thing}
end
def smelltime (thing,dur)
"#{smell (thing)} for #{dur} seconds”
end
end
fido = Dog.new
puts fido.smelltime (”“Alice”, 3)

| smelled Alice for seconds

| smelled #{thing} for #{dur} seconds
| smelled Alice for 3 seconds
Error

CMSC 330 - Fall 2020 38

oS 0 w »

Inheritance

» Recall that every class inherits from Object

def add(y)
return (super(y) + 1)
end
end

b = B.new
puts (b.add (3))

class A ## < Object
def add (x)
return x + 1
end
end

Class 5 < A/

—

_— extend superclass

___— Invoke add method

of parent
b.is a? A
true
b.instance of? A
false

CMSC 330 - Fall 2020

39

Quiz 7: What is the output?

class Gunslinger : |) _
def initialize (name) A Dll'ty, no gOOd B”Iy the kid
@name = name 8. Dirty, no good
end _ _
def full name c. Billy the Kid
"#{Gname}" p. Error
end

end
class Outlaw < Gunslinger
def full name
"Dirty, no good #{super}"
end
end
d = Outlaw.new("Billy the Kid")
puts d.full name

CMSC 330 - Fall 2020 41

Quiz 7: What is the output?

class Gunslinger
def initialize (name)
@name = name
end
def full name
"#{@name}"
end

Dirty, no good Billy the kid
Dirty, no good

Billy the Kid

Error

end
class Outlaw < Gunslinger
def full name

"Dirty, no good #{super}"

end
end

d = Outlaw.new("Billy the Kid")

puts d.full name

CMSC 330 - Fall 2020

42

Global Variables in Ruby

» Ruby has two kinds of global variables
* Class variables beginning with @@ (static in Java)
 Global variables across classes beginning with $

class Global

@@x = 0

def Global.inc
@@x = Q@x + 1;

end

def Global.get &«

$x =

Sx + 1

Sx =0

Global.inc
Sx = Sx + 1
Global.inc

puts (Global.get)
puts ($x)

X define a class

return Q@x
end
end

(“singleton™) method

CMSC 330 - Fall 2020

43

Quiz 8: What is the output?

class Rectangle
def initialize(h, w)
@@h = h
Qw = w
end
def measure ()
return @Q@h + @w
end
End
r = Rectangle.new(1l,2)
s = Rectangle.new(3,4)
puts r.measure ()

CMSC 330 - Fall 2020

~N L0 O O

44

Quiz 8: What is the output?

class Rectangle
def initialize(h, w)
@@h = h
Qw = w
end
def measure ()
return @Q@h + @w
end
End
r = Rectangle.new(1l,2)
s = Rectangle.new(3,4)
puts r.measure ()

CMSC 330 - Fall 2020

~N G0 o O

45

What is a Program?

» In C/C++, a program is...
e A collection of declarations and definitions

* With a distinguished function definition
» int main(int argc, char *argv[]) { ... }

* When you run a C/C++ program, it s like the OS
calls main(...)

» In Java, a program is...
* A collection of class definitions

* With some class (say, MyClass) containing a method
» public static void main(String[] args)

* When you run java MyClass, the main method of
class MyClass is invoked

CMSC 330 - Fall 2020 47

A Ruby Program is...

» The class Object

* When the class is loaded, any expressions not in

method bodies are executed

defines a method of Object
(i.e., top-level methods belong to Object)

N

invokes self.puts >
(part of Object)

invokes self.sayN

CMSC 330 - Fall 2020

def sayN (message, n)
i=0
while i < n
puts message
i=1i+1
end
return 1
end

x = sayN("hello", 3)
puts (x)

