
CMSC 330: Organization of Programming
Languages

Tail Recursion

Factorial

CMSC 330 - Summer 2020

fact n = n * fact (n-1) n>0
1 n=0

let rec fact n =
if n = 0 then 1
else n * fact (n-1)

;;

fact 4 = 24

Factorial

CMSC 330 - Summer 2020

fact 3 = 3 * fact 2
2 * fact 1

1 * fact 0
1 * 1

2 * 1
3 * 2

= 6 Stack

fact 0 1

fact 1 1 1 * fact 0

fact 2 2 2 * fact 1

fact 3 3 3 * fact 2

Stackoverflow?

CMSC 330 - Summer 2020

fact 1000000?

Yet Another Factorial

CMSC 330 - Summer 2020

fact n = aux n 1
aux 1 acc = acc
aux n a = aux (n-1) (n*acc)

fact 3 = aux 3 1
aux 2 3
aux 1 6
6

Yet Another Factorial

CMSC 330 - Summer 2020

fact n = aux n 1
aux 1 acc = acc
aux n a = aux (n-1) (n*acc)

fact 3 = aux 3 1
aux 2 3
aux 1 6
6

Stack

6

1,6 aux 1 6

2,3 aux 2 3

fact 3 3,1 aux 3 1

YAF: Yet Another Factorial

CMSC 330 - Summer 2020

fact n = aux n 1
aux 1 acc = acc
aux n a = aux (n-1) (n*acc)

let fact n =
let rec aux x acc =

if x = 1 then acc
else aux (x-1) (acc*x)

in
aux n 1

Tail Recursion

• Whenever a function ends with a recursive call, it is called
tail recursive
– Its “tail” is recursive

• Tail recursive functions can be implemented without
requiring a stack frame for each call
– No intermediate variables need to be saved, so the compiler

overwrites them

• Typical pattern is to use an accumulator to build up the
result, and return it in the base case

CMSC 330 - Summer 2020

Compare fact and helper

CMSC 330 - Summer 2020

final result is the result of the recursive call

Waits for recursive call’s result to compute final result

let rec fact n =
if n = 0 then 1
else n * fact (n-1)

let fact n =
let rec aux x acc =
if x = 1 then acc
else aux (x-1) (acc*x)

in
aux n 1

let sumlist l =
let rec helper l a =
match l with
[] ->_____ 0

| (x::xs) -> _________
in

helper l 0

Exercise: Finish Tail-recursive Version

CMSC 330 - Summer 2020

let rec sumlist l =
match l with
[] -> 0

| (x::xs) -> (sumlist xs) + x

Tail-recursive version:

let sumlist l =
let rec helper l a =
match l with
[] ->___ a __ 0

| (x::xs) -> helper xs (x+a)
in

helper l 0

Exercise: Finish Tail-recursive Version

CMSC 330 - Summer 2020

let rec sumlist l =
match l with
[] -> 0

| (x::xs) -> (sumlist xs) + x

Tail-recursive version:

Quiz #1

True/false: map is tail-recursive.

CMSC 330 - Summer 2020

let rec map f = function
[] -> []

| (h::t) -> (f h)::(map f t)

A. True
B. False

Quiz #1

True/false: map is tail-recursive.

CMSC 330 - Summer 2020

A. True
B.False

let rec map f = function
[] -> []

| (h::t) -> (f h)::(map f t)

Quiz #2

True/false: fold_left is tail-recursive

CMSC 330 - Summer 2020

A. True
B. False

let rec fold_left f a = function
[] -> a

| (h::t) -> fold_left f (f a h) t

Quiz #2

True/false: fold_left is tail-recursive

CMSC 330 - Summer 2020

A.True
B. False

let rec fold_left f a = function
[] -> a

| (h::t) -> fold_left f (f a h) t

Quiz #3

True/false: fold_right is tail-recursive

CMSC 330 - Summer 2020

A. True
B. False

let rec fold_right f l a =
match l with

[] -> a
| (h::t) -> f h (fold_right f t a)

Quiz #3

True/false: fold_right is tail-recursive

CMSC 330 - Summer 2020

A. True
B.False

let rec fold_right f l a =
match l with

[] -> a
| (h::t) -> f h (fold_right f t a)

Tail Recursion is Important

• Pushing a call frame for each recursive call when
operating on a list is dangerous
– One stack frame for each list element
– Big list = stack overflow!

• So: favor tail recursion when inputs could be large (i.e.,
recursion could be deep). E.g.,
– Prefer List.fold_left to List.fold_right

• Library documentation should indicate tail recursion, or not
– Convert recursive functions to be tail recursive

CMSC 330 - Summer 2020

Tail Recursion Pattern (1 argument)

let func x =
let rec helper arg acc =

if (base case) then acc
else

let arg’ = (argument to recursive call)
let acc’ = (updated accumulator)
helper arg’ acc’ in (* end of helper fun *)

helper x (initial val of accumulator)
;;

CMSC 330 - Summer 2020

Tail Recursion Pattern with fact

let fact x =
let rec helper arg acc =

if arg = 0 then acc
else

let arg’ = arg – 1 in
let acc’ = acc * arg in
helper arg’ acc’ in (* end of helper fun *)

helper x 1
;;

CMSC 330 - Summer 2020

Tail Recursion Pattern with rev

let rev x =
let rec rev_helper arg acc =

match arg with [] -> acc
| h::t ->

let arg’ = t in
let acc’ = h::acc in
rev_helper arg’ acc’ in (* end of helper fun *)

rev_helper x []
;;

CMSC 330 - Summer 2020

Can generalize to
more than one
argument, and
multiple cases for
each recursive call

Quiz #4

True/false: this is a tail-recursive map

CMSC 330 - Summer 2020

A. True
B. False

let map f l =
let rec helper l a =
match l with
[] -> a

| h::t -> helper t ((f h)::a)
in helper l []

Quiz #4

True/false: this is a tail-recursive map

CMSC 330 - Summer 2020

A. True
B.False (elements are reversed)

let map f l =
let rec helper l a =
match l with
[] -> a

| h::t -> helper t ((f h)::a)
in helper l []

A Tail Recursive map

CMSC 330 - Summer 2020

let map f l =
let rec helper l a =
match l with
[] -> a

| h::t -> helper t ((f h)::a)
in rev (helper l [])

Could instead change (f h)::a to be a@(f h)
Q: Why is the above implementation a better choice?
A: O(n) running time, not O(n2) (where n is length of list)

https://xkcd.com/1270/

CMSC 330 - Summer 2020

Outlook: Is Tail Recursion General?

• A function that is tail-recursive returns at most
once (to its caller) when completely finished
– The final result is exactly the result of a recursive call; no

stack frame needed to remember the current call

• Is it possible to convert an arbitrary program into an
equivalent one, except where no call ever returns?
– Yes. This is called continuation-passing style
– We will look at this later, if we have time

CMSC 330 - Summer 2020

