CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result
Languages and Machines

- Turing Machines
- PDAs
- cflgs
- FSMs
- reg exps
- Regular Languages
- Context-Free Languages
- Recursive Languages
- Recursively Enumerable Languages
A Few Questions About REs

- How are REs implemented?
 - Given an arbitrary RE and a string, how to decide whether the RE matches the string?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., e+ is the same as ee*

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

- ... next comes the math!
Definition: Alphabet

- An **alphabet** is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: $\Sigma = \{0, 1\}$
 - Decimal: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ϵ is the empty string (""") in Ruby
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\epsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \epsilon \}$ (and $\emptyset \neq \epsilon$)

- Example strings over alphabet $\Sigma = \{0,1\}$ (binary):
 - 0101
 - 0101110
 - ϵ
Definition: Language

- A language L is a set of strings over an alphabet

- Example: All strings of length 1 or 2 over alphabet $\Sigma = \{a, b, c\}$ that begin with a
 - $L = \{ a, aa, ab, ac \}$

- Example: All strings over $\Sigma = \{a, b\}$
 - $L = \{ \varepsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots \}$
 - Language of all strings written Σ^*

- Example: All strings of length 0 over alphabet Σ
 - $L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \}$
 - “the set of strings s such that s is from Σ^* and has length 0”
 - $= \{ \varepsilon \} \neq \emptyset$
Definition: Language (cont.)

- Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
 - Give an example element of this language: \((123)456-7890 \)
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language?
 \(/\((\d{3})\)\d{3}-\d{4}/ \)

- Example: The set of all valid (runnable) Ruby programs
 - Later we’ll see how we can specify this language
 - (Regular expressions are useful, but not sufficient)
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- **Concatenation** L_1L_2 is defined as
 - $L_1L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$

- **Union** is defined as
 - $L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \}$

- **Kleene closure** is defined as
 - $L^* = \{ x \mid x = \varepsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Operations Examples

Let $L_1 = \{a, b\}$, $L_2 = \{1, 2, 3\}$ (and $\Sigma = \{a, b, 1, 2, 3\}$)

- What is L_1L_2?
 - $\{a1, a2, a3, b1, b2, b3\}$

- What is $L_1 \cup L_2$?
 - $\{a, b, 1, 2, 3\}$

- What is L_1^*?
 - $\{\epsilon, a, b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, \ldots\}$
Quiz 1: Which string is not in L_3

$L_1 = \{a, ab, c, d, \varepsilon\} \quad \text{where } \Sigma = \{a, b, c, d\}$

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Quiz 1: Which string is not in \(L_3 \)

\[
\begin{align*}
L_1 &= \{a, \, ab, \, c, \, d, \, \varepsilon\} \quad \text{where } \Sigma = \{a, b, c, d\} \\
L_2 &= \{d\} \\
L_3 &= L_1 \cup L_2
\end{align*}
\]

A. \(a \)
B. \(abd \)
C. \(\varepsilon \)
D. \(d \)
Quiz 2: Which string is **not** in L_3

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\}$ where $\Sigma = \{a, b, c, d\}$
$L_2 = \{d\}$
$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Quiz 2: Which string is not in L_3

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\}$ \quad \text{where} \quad \Sigma = \{a, b, c, d\}

$L_2 = \{d\}$

$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Similarly to how we expressed Micro-OCaml we can define a grammar for regular expressions \mathcal{R}

\[
\mathcal{R} ::= \emptyset \quad \text{The empty language} \\
\quad | \varepsilon \quad \text{The empty string} \\
\quad | \sigma \quad \text{A symbol from alphabet } \Sigma \\
\quad | \mathcal{R}_1 \mathcal{R}_2 \quad \text{The concatenation of two regexps} \\
\quad | \mathcal{R}_1 | \mathcal{R}_2 \quad \text{The union of two regexps} \\
\quad | \mathcal{R}^* \quad \text{The Kleene closure of a regexp}
\]
Regular Languages

- Regular expressions denote languages. These are the regular languages
 - aka regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over \(\Sigma \)
 - \(\{a^nb^n \mid n > 0 \} \) (\(a^n \) = sequence of \(n \) a’s)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Semantics: Regular Expressions (1)

Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows.

Constants

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each symbol $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

Ex: with $\Sigma = \{a, b\}$, regex a denotes language $\{a\}$, regex b denotes language $\{b\}$
Semantics: Regular Expressions (2)

- Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

- There are no other regular expressions over Σ.
Terminology etc.

- Regexps apply operations to symbols
 - Generates a set of strings (i.e., a language)
 - (Formal definition shortly)
 - Examples
 - a generates language \{a\}
 - a|b generates language \{a\} \cup \{b\} = \{a, b\}
 - a* generates language \{\varepsilon\} \cup \{a\} \cup \{aa\} \cup \ldots = \{\varepsilon, a, aa, \ldots \}

- If \(s \in\) language \(L\) generated by a RE \(r\), we say that \(r\) accepts, describes, or recognizes string \(s\)
Precedence

Order in which operators are applied is:

• Kleene closure $\ast >$ concatenation $>$ union $|$

• $ab|c = (a b) | c \rightarrow \{ab, c\}$

• $ab^* = a (b^*) \rightarrow \{a, ab, abb \ldots\}$

• $a|b^* = a | (b^*) \rightarrow \{a, \epsilon, b, bb, bbb \ldots\}$

We use parentheses () to clarify

• E.g., $a(b|c), (ab)^*, (a|b)^*$

• Using escaped \(if parens are in the alphabet
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition

- `/Ruby/` – concatenation of single-symbol REs
- `/Ruby|Regular)/` – union
- `/Ruby)/` – Kleene closure
- `/Ruby)+/` – same as `(Ruby)(Ruby)*`
- `/Ruby)/?/` – same as `(ε|(Ruby))`
- `/a-zA-Z]/` – same as `(a|b|c|...|z)`
- `/[^0-9]/` – same as `(a|b|c|...) for a,b,c,... ∈ Σ - {0..9}`
- `^, $` – correspond to extra symbols in alphabet
 - Think of every string containing a distinct, hidden symbol at its start and at its end – these are written `^` and `$
Implementing Regular Expressions

- We can implement a regular expression by turning it into a **finite automaton**
 - A “machine” for recognizing a regular language
Finite Automaton

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton

- Machine starts in start or initial state
- Repeat until the end of the string s is reached
 - Scan the next symbol $\sigma \in \Sigma$ of the string s
 - Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached

States S (start, final)
Alphabet Σ
Transition edges δ
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

0 0 1 0 1 1

Accepted?
Yes
Finite Automaton: Example 2

0 0 1 0 1 0

Accepted?
No
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1

regular expression for this language is \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Quiz 4: Which string is **not** accepted?

(a,b,c notation shorthand for three self loops)

A. bcca
B. abbbc
C. ccc
D. ε
Quiz 4: Which string is **not** accepted?

(a,b,c notation shorthand for three self loops)

A. bcca
B. abbabc
C. ccc
D. ε
What language does this FA accept?

$$a^*b^*c^*$$

S3 is a dead state – a nonfinal state with no transition to another state - aka a trap state
Finite Automaton: Example 4

Language?

$\text{a}^*\text{b}^*\text{c}^*$ again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown.

Language?
- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit.
Finite Automaton: Example 5

Description for each state

- **S0** = “Haven't seen anything yet” OR “Last symbol seen was a b”
- **S1** = “Last symbol seen was an a”
- **S2** = “Last two symbols seen were ab”
- **S3** = “Last three symbols seen were abb”
Language as a regular expression?

(a|b)*abb
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single a.
B. Any string in \{a,b\}.
C. A string that starts with b followed by a’s.
D. Zero or more b’s, followed by one or more a’s.
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single a.
B. Any string in $\{a,b\}$.
C. A string that starts with b followed by a’s.
D. Zero or more b’s, followed by one or more a’s.
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{a,b\}$

- That accepts strings containing an even number of a's and any number of b's
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings **containing** two consecutive 0s very immediately (right after, no other things in between) followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s

4 states:

<table>
<thead>
<tr>
<th>0s</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

[Diagram of the FA with transitions labeled for 0 and 1]
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s

Flip each state