CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
The story so far, and what’s next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R's language

- Approach: Convert R to a finite automaton FA and see whether s is accepted by FA
 - Details: Convert R to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA), which enjoys a fast acceptance algorithm
Two Types of Finite Automata

- **Deterministic Finite Automata (DFA)**
 - Exactly one sequence of steps for each string
 - Easy to implement acceptance check
 - All examples so far

- **Nondeterministic Finite Automata (NFA)**
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for \((a|b)^*abb\)
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- aba
 - Has paths to states S0, S1
- ababa
 - Has paths to S0, S1
 - Need to use \(\varepsilon\)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which DFA matches this regexp?

\[b(b|a+b?) \]

A.

B.

C.

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions

- What's this definition saying that \(\delta\) is?

- A DFA accepts \(s\) if it stops at a final state on \(s\)
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$
- or as \{ \((S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1) \) \}
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

```
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("rejected\n"); return 0;
            default: printf("rejected\n"); return 0;
        }
        break;
        case 1: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("accepted\n"); return 1;
            default: printf("rejected\n"); return 0;
        }
        break;
        default: printf("unknown state; I'm confused\n");
    }
    break;
}
```

It's easy to build a program which mimics a DFA.
Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components (Σ, Q, q_0, F, δ) of a DFA:
let $q = q_0$
while (there exists another symbol σ of the input string)
 $q := \delta(q, \sigma);$
if $q \in F$ then
 accept
else reject

• q is just an integer
• Represent δ using arrays or hash tables
• Represent F as a set
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma, Q, q_0, F\) as with DFAs
 - \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{(S1,a,S1), (S1,a,S2), (S2,\varepsilon,S3)\}\)

An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA’s start state to a final state.
NFA Acceptance Algorithm (Sketch)

- When NFA processes a string \(s\)
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label, and \(\varepsilon\)-transitions
 - If any current state is final when done then accept \(s\)

- Example
 - After processing “a”
 - NFA may be in states
 S1
 S2
 S3
 - Since S3 is final, \(s\) is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! *Can convert between them*

NB. Both *transform* and *reduce* are historical terms; they mean “convert”
Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall $F = \text{set of final states}$

- Will define $<A>$ for base cases: σ, ε, \emptyset
 - Where σ is a symbol in Σ

- And for inductive cases: AB, $A|B$, A^*
Reducing Regular Expressions to NFAs

- **Base case:** σ

$$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$$

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$
where
- Σ is the alphabet
- Q is set of states
- q_0 is starting state
- F is set of final states
- δ is transition relation
Reduction

- Base case: ϵ

$$<\epsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

- Base case: \emptyset

$$<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$$
Reduction: Concatenation

- Induction: AB

\[
<\text{A}> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)
\]

\[
<\text{B}> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)
\]
Reduction: Concatenation

Induction: \(AB \)

\[
\begin{align*}
&\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
&\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \\
&\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})
\end{align*}
\]
Reduction: Union

Induction: $A \| B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

Induction: $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\},$
 $\delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1)\})$
Reduction: Closure

Induction: A^*

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

- Induction: \(A^* \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0)\}) \)
Quiz 2: Which NFA matches a^* ?

A.

B.

C.

D.

CMSC 330 Fall 2020
Quiz 2: Which NFA matches a^*?
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?
RE → NFA

Draw NFAs for the regular expression \((0|1)^*110^*\)
Reduction Complexity

- Given a regular expression A of size n...
 Size = # of symbols + # of operations

- How many states does $<A>$ have?
 - Two added for each $|$, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Reducing NFA to DFA
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example

```
NFA
S1 -> a -> S2

S2 -> a, ε -> S3

S1, S2, S3

DFA
S1 -> a -> S1, S2, S3
```
Algorithm for Reducing NFA to DFA

- Reduction applied using the **subset** algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q_0, F_n, δ)
 - Output
 - DFA (Σ, R, r_0, F_d, δ)
 - Using two subroutines
 - ϵ-closure(δ, p) (and ϵ-closure(δ, Q))
 - move(δ, p, σ) (and move(δ, Q, σ))
 - (where p is an NFA state)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only ε-transitions in \(\delta \)
 - If \(\exists p, p_1, p_2, \ldots p_n, q \in Q \) such that
 - \(\{p,\varepsilon,p_1\} \in \delta \), \(\{p_1,\varepsilon,p_2\} \in \delta \), ..., \(\{p_n,\varepsilon,q\} \in \delta \)

- \(\varepsilon\)-closure(\(\delta \), \(p \))
 - Set of states reachable from \(p \) using ε-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon\)-closure(\(\delta \), \(p \)) = \{ \(q | p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - \(\varepsilon\)-closure(\(\delta \), \(Q \)) = \{ \(q | p \in Q, p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - Notes
 - \(\varepsilon\)-closure(\(\delta \), \(p \)) always includes \(p \)
 - We write \(\varepsilon\)-closure(\(p \)) or \(\varepsilon\)-closure(\(Q \)) when \(\delta \) is clear from context
ε-closure: Example 1

- Following NFA contains
 - $p_1 \xrightarrow{\varepsilon} p_2$
 - $p_2 \xrightarrow{\varepsilon} p_3$
 - $p_1 \xrightarrow{\varepsilon} p_3$
 - Since $p_1 \xrightarrow{\varepsilon} p_2$ and $p_2 \xrightarrow{\varepsilon} p_3$

- ε-closures
 - ε-closure(p_1) = \{ p_1, p_2, p_3 \}
 - ε-closure(p_2) = \{ p_2, p_3 \}
 - ε-closure(p_3) = \{ p_3 \}
 - ε-closure(\{ p_1, p_2 \}) = \{ p_1, p_2, p_3 \} \cup \{ p_2, p_3 \}
ε-closure: Example 2

- Following NFA contains
 - p₁ → p₃
 - p₃ → p₂
 - p₁ → p₂
 - Since p₁ → p₃ and p₃ → p₂

- ε-closures
 - ε-closure(p₁) = \{ p₁, p₂, p₃ \}
 - ε-closure(p₂) = \{ p₂ \}
 - ε-closure(p₃) = \{ p₂, p₃ \}
 - ε-closure(\{ p₂, p₃ \}) = \{ p₂ \} ∪ \{ p₂, p₃ \}
ε-closure Algorithm: Approach

Input: NFA (Σ, Q, q₀, Fₙ, δ), State Set R
Output: State Set R’

Algorithm

Let R’ = R
Repeat
 Let R = R’
 Let R’ = R ∪ {q | p ∈ R, (p, ε, q) ∈ δ}
Until R = R’

This algorithm computes a fixed point
ε-closure Algorithm Example

Calculate ε-closure(δ, {p_1})

$\begin{align*}
R & \quad R' \\
\{p_1\} & \quad \{p_1\} \\
\{p_1\} & \quad \{p_1, p_2\} \\
\{p_1, p_2\} & \quad \{p_1, p_2, p_3\} \\
\{p_1, p_2, p_3\} & \quad \{p_1, p_2, p_3\}
\end{align*}$

Let $R' = R$
Repeat
Let $R = R'$
Let $R' = R \cup \{q | p \in R, (p, \varepsilon, q) \in \delta\}$
Until $R = R'$

Let $R' = R$
Repeat
Let $R = R'$
Let $R' = R \cup \{q | p \in R, (p, \varepsilon, q) \in \delta\}$
Until $R = R'$
Calculating move(p,σ)

- move(δ,p,σ)
 - Set of states reachable from p using exactly one transition on symbol σ
 - Set of states q such that {p, σ, q} ∈ δ
 - move(δ,p,σ) = { q | {p, σ, q} ∈ δ }
 - move(δ,Q,σ) = { q | p ∈ Q, {p, σ, q} ∈ δ }
 - i.e., can “lift” move() to a set of states Q
 - Notes:
 - move(δ,p,σ) is ∅ if no transition (p,σ,q) ∈ δ, for any q
 - We write move(p,σ) or move(R,σ) when δ clear from context
move(p,σ) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - move(p1, a) = \{ p2, p3 \}
 - move(p1, b) = \emptyset
 - move(p2, a) = \emptyset
 - move(p2, b) = \{ p3 \}
 - move(p3, a) = \emptyset
 - move(p3, b) = \emptyset

move({p1,p2},b) = \{ p3 \}
move(p, σ) : Example 2

Following NFA

- $\Sigma = \{ a, b \}$

Move

- $move(p_1, a) = \{ p_2 \}$
- $move(p_1, b) = \{ p_3 \}$
- $move(p_2, a) = \{ p_3 \}$
- $move(p_2, b) = \emptyset$
- $move(p_3, a) = \emptyset$
- $move(p_3, b) = \emptyset$

move({p1,p2}, a) = { p2, p3 }
NFA \rightarrow DFA Reduction Algorithm ("subset")

- **Input** NFA ($\Sigma, Q, q_0, F_n, \delta$), **Output** DFA ($\Sigma, R, r_0, F_d, \delta'$)

- **Algorithm**

 Let $r_0 = \varepsilon$-closure(δ,q_0), add it to R
 // DFA start state

 While \exists an unmarked state $r \in R$
 // process DFA state r

 Mark r
 // each state visited once

 For each $\sigma \in \Sigma$
 // for each symbol σ

 Let $E = \text{move}(\delta,r,\sigma)$
 // states reached via σ

 Let $e = \varepsilon$-closure(δ,E)
 // states reached via ε

 If $e \not\in R$
 // if state e is new

 Let $R = R \cup \{e\}$
 // add e to R (unmarked)

 Let $\delta' = \delta' \cup \{r, \sigma, e\}$
 // add transition $r \rightarrow e$ on σ

 Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
 // final if include state in F_n
NFA → DFA Example 1

- Start = ε-closure(δ,p1) = \{ \{p1,p3\} \}
- R = \{ \{p1,p3\} \}
- $r \in R = \{p1,p3\}$
- move(δ,\{p1,p3\},a) = \{p2\}
 - $e = \varepsilon$-closure(δ,\{p2\}) = \{p2\}
 - $R = R \cup \{\{p2\}\} = \{ \{p1,p3\}, \{p2\} \}$
 - $\delta' = \delta' \cup \{\{p1,p3\}, a, \{p2\}\}$
- move(δ,\{p1,p3\},b) = \emptyset

NFA

DFA
NFA \rightarrow DFA Example 1 (cont.)

- $R = \{\{p1,p3\}, \{p2\}\}$
- $r \in R = \{p2\}$
- $\text{move}(\delta, \{p2\}, a) = \emptyset$
- $\text{move}(\delta, \{p2\}, b) = \{p3\}$
 - $e = \varepsilon$-closure($\delta, \{p3\}$) = $\{p3\}$
 - $R = R \cup \{\{p3\}\} = \{\{p1,p3\}, \{p2\}, \{p3\}\}$
 - $\delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}$
NFA → DFA Example 1 (cont.)

- $R = \{ \{p1,p3\}, \{p2\}, \{p3\} \}$
- $r \in R = \{p3\}$
- $\text{Move}(\{p3\},a) = \emptyset$
- $\text{Move}(\{p3\},b) = \emptyset$
- Mark $\{p3\}$, exit loop
- $F_d = \{\{p1,p3\}, \{p3\}\}$
 - Since $p3 \in F_n$
- Done!
NFA → DFA Example 2

- **NFA**

- **DFA**

\[R = \{ \{A\}, \{B,D\}, \{C,D\} \} \]
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

- p0 -> p1 (a)
- p1 -> p2 (b)
- p0 -> p1 (ε)

DFA options:

A. p0 -> p1 (a) -> p1, p2 (b)
B. p0 -> p1 (b)
C. p0 -> p1 (a) -> p2, p0 (a)
D. None of the above

CMSC 330 Fall 2020
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:

\[
\begin{array}{c}
p_0 \xrightarrow{a} p_1 \xrightarrow{b} p_2,
\end{array}
\]

\[
\begin{array}{c}
p_0, p_1, p_2,
\end{array}
\]
NFA \rightarrow DFA Example 3

NFA

DFA

$$R = \{ \{A,E\} , \{B,D,E\} , \{C,D\} , \{E\} \}$$
NFA \rightarrow DFA Example
NFA → DFA Practice
NFA → DFA Practice