
CMSC 420:Fall 2020 Dave Mount

Practice Problems for the Midterm

Exam Logistics:

• The Midterm Exam will be asynchronous and online. The exam will be made available
through Gradescope for a 48-hour period starting at 12:00am the morning of Thu, Oct
29 and running through 11:59pm the evening of Fri, Oct 30. The exam is designed to
be taken over a 90-minute time period, but to allow time for scanning and uploading, you
will have 2 hours to submit the exam through Gradescope once you start it.

• The exam will open-book, open-notes, open-Internet, but the exam must be done on your
own without the aid of other people or software. (You may use a simple arithmetic calculator,
but I don’t expect that you will need one.)

• Do not discuss any aspects of the exam with classmates during the exam’s 48-hour time
window, even if you have both submitted. This includes its content, its difficulty, and its
length.

• If any questions arise while you are taking the exam, please either email me (mount@umd.edu)
or make a private Piazza post. (Do not ask your classmates.) If you are unsure about how
to interpret a problem and I do not respond in a timely manner, please do your best and
write down any assumptions you are making. There will be no “trick” questions on the exam.
Thus, if a question doesn’t make sense or seems too easy or too hard, please check with me.

• If you experience any technical issues while taking the exam, don’t panic. Save you work
(ideally in a manner that attaches a time stamp), and contact me by email (mount@umd.edu)
as soon as possible. I understand that unforeseen events can occur, and I will attempt make
reasonable accommodations.

Disclaimer: These practice problems have been extracted from old homework assignments and
exams. Material changes from semester to semester. These do not reflect the actual coverage,
difficulty, or length of the midterm exam.
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Problem 0. Expect at least one question of the form “apply operation X to data structure Y ,”
where X is a data structure that has been presented in lecture.

Problem 1. Short answer questions. Except where noted, explanations are not required, but may
be given to help with partial credit.

(a) A binary tree is full if every node either has 0 or 2 children. Given a full binary tree
with n total nodes, what is the maximum number of leaf nodes? What is the minimum
number? Give your answer as a function of n (no explanation needed).

(b) True or false? Let T be extended binary search tree (that is, one having internal and
external nodes). In an inorder traversal, internal and external nodes are encountered in
alternating order. (If true, provide a brief explanation. If false, show a counterexample.)

(c) True or false? In every extended binary tree having n external nodes, there exists an
external node of depth at most dlg ne. Explain briefly.

(d) What is the minimum and maximum number of levels in a 2-3 tree with n nodes. (Define
the number of levels to be the height of the tree plus one.) Hint: It may help to recall
the formula for the geometric series:

∑m−1
i=0 ci = (cm − 1)/(c− 1).

(e) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

(f) Repeat (e) in the case of deletion from an AVL tree. (You can give your answer as an
asymptotic function of n.)

(g) You are given a 2-3 tree of height h, which you convert to an AA-tree. As a function
of h, what is the minimum number of red nodes that might appear on any path from a
root to a leaf node in the AA tree? What is the maximum number?

(h) Both skip lists and B-trees made use of nodes containing a variable number of elements.
(In the skip list, and node has a variable number of pointers, and in a B-tree a node
has a variable number of keys/children.) In one case, we allocated nodes of variable size
and in the other case, we allocated nodes of the same fixed size. Why did we do things
differently in these two cases?

(i) Unbalanced search trees and treaps both support dictionary operations in O(log n) “ex-
pected time.” What difference is there (if any) in the meaning of “expected time” in
these two contexts?

(j) Splay trees are known to support efficient finger search queries. What is a “finger search
query”?

(k) Consider a splay tree containing n keys a1 < a2 < · · · < an. Let x, y, and z be any
three consecutive elements in this sorted sequence. Suppose that we perform splay(x)
followed immediately by splay(z). What (if anything) can be said about the depth of
y at this time?

Problem 2. You are given a degenerate binary search tree with n nodes in a left chain as shown
in Fig. 3, where n = 2k − 1 for some k ≥ 1.

(a) Derive an algorithm that, using only single left- and right-rotations, converts this tree
into a perfectly balanced complete binary tree (see Fig. 1).
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Figure 1: Rotating into balanced form.

(b) As an asymptotic function of n, how many rotations are needed to achieve this? O(log n)?
O(n)? O(n log n)? O(n2)? Briefly justify your answer.

Problem 3. You a given a threaded binary search tree T (not necessarily balanced). Recall that
each node has additional fields p.leftIsThread (resp., p.rightIsThread). These indicate
whether p.left (resp., p.right) points to an actual child or it points to the inorder prede-
cessor (resp., successor).

Present pseudocode for each of the following operations. Both operations should run in time
proportional to the height of the tree.

(a) void T.insert(Key x, Value v): Insert a new key-value pair (x, v) into T and update
the node threads appropriately (see Fig. 2(a)).

(b) Node preorderSuccessor(Node p): Given a non-null pointer to any node p in T , return
a pointer to its preorder successor. (Return null if there is no preorder successor.)
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Figure 2: Threaded tree operations.

Problem 4. You are given a binary search tree where, in addition to the usual fields p.key,
p.left, and p.right, each node p has a parent link, p.parent. This points to p’s parent,
and is null if p is the root. Given such a tree, present pseudo-code for a function

Node preorderSuccessor(Node p)

which is given a non-null reference p to a node of the tree and returns a pointer to p’s preorder
successor in the tree (or null if p has no preorder successor). Your function should run in
time proportional to the height of the tree. Briefly explain how your function works.
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Problem 5. Suppose that in addition to the key-value pair (p.key and p.value) and pointers to
the node’s left and right children (p.left and p.right), each node of a binary search tree
stores a sibling pointer, p.sibling, which points to p’s sibling, or null if p has no sibling.

Recall the following code for performing a right rotation of a node in a binary search tree:

Node rotateRight(Node p) {

Node q = p.left;

p.left = q.right;

q.right = p;

return q;

}

Modify the above code so that, in addition to performing the rotation, the sibling pointers
are also updated. (You may not assume the existence of other information, such as parent
pointers or threads. Your function should run in constant time.)

Problem 6. A zig-zag tree is defined to be a binary search tree having an odd number of nodes
that consists of a single path, alternating between right- and left-child links. An example is
shown in Fig. 3, where we have also labeled each node with its depth, that is, the length of
the path from the root.

(a) Draw the final tree that results from executing splay("e") on the tree of the figure
below. (Intermediate results can be given for partial credit.)
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Figure 3: Zig-zag splay tree (with node depths shown).

(b) Let T be a zig-zag tree with n nodes, and let T ′ be the tree that results after performing a
splay operation on T ’s deepest leaf. Consider a node p at level k in T , for 0 ≤ k ≤ n−2.
What is the depth of p in T ′? Express your answer as a function of k and n. Your
formula should apply to every node of the tree, except the node that was splayed.

(c) Give a short proof justifying the correctness of your formula.

Problem 7. You are given a skip list with n nodes in which, rather than promoting each node
to the next higher level with probability 1/2, we promote each node with probability p, for
0 < p < 1.
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(a) Given a skip list with n keys, what is the expected number of keys that contribute to
the ith level. (Recall that the lowest level is level 0.) Briefly explain.

(b) Show that (excluding the header and sentinel nodes) the total number of links in such
a skip list (that is, the total size of all the skip list nodes) is expected to be at most
n/(1 − p). (Hint: It may be useful to recall the formula for the geometric series from
Problem 1(d).)

Problem 8. Show that if all nodes in a splay tree are accessed (splayed) in sequential order, the
resulting tree consists of a linear chain of left children.

Problem 9. The objective of this problem is to design an enhanced stack data structure, called
MinStack. For concreteness, let’s assume that the stack just stores integers. Your stack
should support the standard stack operations void push(int x), which pushes x on top of
the stack, and int pop(), which removes the element at the top of the stack and returns
its value. It must also support the additional operation, int getMin(), which returns the
smallest value currently in the stack, without altering the contents of the stack. Finally, there
is a constructor MinStack(int n), which is given the maximum number n of items that will
be stored in the stack.

Present pseudocode for a data structure that implements these operations. All operations
should run in O(1) time. (We will give partial credit if algorithm is correct, but your running
time is worse than this.) Your answer should include the following things:

• Explain what objects are maintained by your data structure.

• Explain how the data structure is initialized (that is, what does the constructor do?)

• Present pseudocode descriptions of push(x), pop(), and getMin().

No error checking is needed. (No more than n elements will be in the stack at any time and
no pop or getMin from an empty stack.)
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