
CMSC 420:Fall 2020 Dave Mount

Solutions to Homework 1: Basic Data Structures and Trees

Solution 1: See Fig. 1(a) and (b).

(a) (b)

a

b c d

e f g h

i j

a

b c

root

d e

g h i

f

j

Figure 1: Solution to Problem 1, converting between tree representations.

Solution 2:

(i) (a): A preorder traversal of the original tree T is the same as a preorder traversal of the
binary-equivalent tree. (In the example given in the homework, this is 〈a, b, e, c, f, i, j, d, g, h〉
for both trees.)

r

v1 v2 vk

r

v1
v2

vk

T1 T2 Tk

T ′
k

T ′
1

T ′
2

T T ′

Figure 2: Solution to Problem 2.

This can be seen intuitively as follows. Suppose we have a rooted tree T with root r and
subtrees T1, T2, . . . , Tk. Let v1, v2, . . . , vk denote the root nodes of these subtrees. Let T ′

denote the associated binary-equivalent tree. In this tree r is the root, and it has no right
child. If we go to r’s left subtree and following right-child links as far as possible, we encounter
the roots, v1, v2, . . . , vk, of the associated binary-equivalent subtrees T ′1, T

′
2, . . . , T

′
k (see Fig. 2).

By definition, a preorder traversal of T visits r followed by preorder traversals of T1 through
Tk. Similarly, a preorder traversal of the binary-equivalent tree visits r followed by preorder

1



traversals of T ′1 through T ′k. (This can be seen by unraveling the recursive calls along the
right-child links.)

(ii) (c): A postorder traversal of the original tree T is the same as an inorder traversal of the
binary-equivalent tree T ′. (In the example given in the homework, this is 〈e, b, i, j, f, c, g, h, d, a〉
for both trees.)

Here again is an intuitive explanation. Consider the same trees T and T ′ as in (a). A postorder
traversal of T applies a postorder traversal to T1, . . . , Tk, and finally visits r. Observe that
the last node visited in each subtree Ti is its root vi. It is easy to see that an inorder traversal
of the binary-equivalent tree T ′ first performs an inorder traversal of the left subtree and then
returns to the root, so again, r is the last node visited. In the process of visiting each subtree
T ′i , we first visit all the nodes of this subtree, ending with the root vi, and then we proceed
to the next subtree. Thus, the order in which nodes are visited for both trees is the same.

Solution 3: The inorder threads are shown as dotted lines in Fig. 3. (The inorder traversal is
〈d, g, j, k, i, b, a, e, c, f, h〉.)

d

h

i

b c

f

g

a

e

j

k

Figure 3: Solution to Problem 3: Inorder threads.

Solution 4:

(a) The insert function for a tree with parent links is a very minor extension to the previous
insertion function. The only real difference is that we pass a reference to the parent node as
we descend through the tree. Let’s assume that the node constructor takes five arguments,
the key, the value, the left child, the right child, and the parent. When the new node is added,
we set its parent link appropriately.

BSTNode insert(Key x, Value v, BSTNode p, BSTNode q) {

if (p == null) // fell out of the tree?

p = new BSTNode(x, v, null, null, q); // ... create a new leaf node

else if (x < p.key) // x is smaller?

2



p.left = insert(x, v, p.left, p); // ...insert left

else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right, p); // ...insert right

else throw DuplicateKeyException; // x is equal ...duplicate key!

return p // return ref to current node

}

We should be careful that we handle the boundary case correctly. When the tree is empty
(root == null) the initial call will be root = insert(x, v, null, null). This will trigger
the p == null case, which creates a new (root) node in which all the links are null, and the
root will be assigned to this new node. Which is exactly what we want.

(b) To compute the inorder successor of a node, we first check whether its right child is not null.
If so, we apply the same process as in the findReplacement function given in Lecture 4 (see
Fig. 4(a)). Otherwise, we iteratively follow parent links until we first find an ancestor where
we lie in the left subtree of this ancestor (see Fig. 4(b)). If no such ancestor is found, p must
be the last inorder node of the tree, and we return null.

q

p q

p

(a) (b)

Figure 4: Solution to Problem 4(b): Inorder successor.

BSTNode inorderSuccessor(BSTNode p) { // find p’s inorder successor

if (p.right != null) { // p has a right subtree?

BSTNode q = p.right;

while (q.left != null) q = q.left; // find its leftmost node

return q;

}

else {

BSTNode q = p.parent; // follow p’s ancestor chain

while (q != null && p == q.right) { // until we are in a left child

p = q;

q = q.parent;

}

return q;

}

}

Solution 5: We will just answer part (b) and point out how part (a) arises as a special case. We
will show that the amortized cost in the c-expanding case is 1 + 2 c

c−1 . Note that this approaches 3

3



in the limit as c→∞. I’ll give two proofs. The first is “token-based,” and the second is based on
straightforward counting all the costs.

Token-based proof: We will prove that the amortized cost of the c-exanding array is f(c) for
some function f , and as the analysis proceeds, we will see what function f does the job.
Consider any run of n push/pop operations, starting from an empty stack.

First, let’s partition the sequence of operations into runs, where each run ends whenever we
perform a reallocation. At the start of a new run, we have just overflown an array of some size
size m and allocated a new array of size cm (see Fig. 5). We copied the existing m elements
to this new array, which leaves cm − m = (c − 1)m empty slots for expansion. We know,
therefore, that the length of the run will be at least (c− 1)m (and possibly longer if there are
many pops). For each of these operations, we charge the user f(c) tokens. One token will go
to pay for the push/pop operation and the remaining f(c) − 1 tokens will go into our bank
account. When this run ends, we have banked at least (f(c)−1)(c−1)m tokens. We allocate
a new array of size c2m and copy the cm elements over to this array, at a cost of +2cm. We
want to select f(c) so that we have enough tokens in our bank account. Thus, we require
that

Number of tokens banked = (f(c)− 1) · (c− 1)m ≥ 2cm.

By simple manipulations, we see that f(c)− 1 = 2 c
c−1 works, that is f(c) = 1 + 2 c

c−1 . This is
our final amortized cost. Notice that in the case where c = 2, this yields f(c) = 5 and when
c = 3, this yields f(c) = 4.

1 11 2cmActual cost:

Collected tokens f (c)
Realloc Cost = 2cm
Banked = (f (c)− 1)(c− 1)m

cm

c2mpush
push

push
push

+ + +

+ + +f (c) f (c) f (c)

(c− 1)m

m + 1
cm + 1

1+

Need: (f (c)− 1)(c− 1)m ≥ 2cm

⇒ f (c) = 1 + 2c/(c− 1)

Figure 5: Solution to Problem 5.

Direct proof: Consider any sequence of n operations on the c-expanding stack. Suppose that the
array has been reallocated k times. Starting with the initial array of size 1, we have the array
sizes c, c2, . . . , ck after each reallocation. Each reallocation to an array of size ci incurs a cost
of twice the size of the previous array, that is, 2ci−1. This yields a total reallocation cost of:

2

k∑
i=1

ci−1 = 2

k−1∑
i=0

ci = 2
ck − 1

c− 1
≤ 2

ck

c− 1
.

4



(We applied the formula for the geometric series,
∑k−1

i=0 ci = (ck − 1)/(c− 1).)

In order to perform the final reallocation, we must have overflown the array of next-to-last size
of ck−1. Therefore, the number of operations n is at least ck−1 + 1 > ck−1. (This is achieved
if we do all pushes and no pops.) Therefore, if we consider just the reallocation costs alone,

we have a total cost of T (n) ≤ 2 ck+1

c−1 distributed over a total of n > ck−1 operations. This
implies that the amortized cost for just the reallocations satisfies

T (n)

n
≤

2 ck

c−1
ck−1

=
2c

c− 1
.

If we include the addition +1 cost for the actual pushes and pops, the total amortized cost is
at most 1 + 2 c

c−1 .

Solution to the Challenge Problem: We create two pointers that “chase” each other around
the list at different speeds. (I’ve heard this called the “tortoise and hare” approach.) The lead
pointer advances once with every iteration, and the trailing pointer advances once with every other
iteration, that is, at half the speed. If the lead pointer ever hits null, we report that the list “ends.”
If the lead pointer ever equals the trailing pointer, we report that the list “loops” around.

We claim that the running time is O(n), where n is the number of nodes. If the list ends, then
clearly we discover this after n iterations. If the list loops around, let m denote the number of
nodes in the looped part. After 2(n −m) iterations, both pointers have made it into the looped
section. After an additional d3m/2e iterations, the lead pointer is guaranteed to pass the trailing
pointer. So, if the list is looped, we will discover this after

2(n−m) +
3m

2
= 2n− m

2
≤ 2n− n

2
=

3n

2
= O(n),

iterations, as desired.
There is an alternative (less elegant) solution based on guessing a value n′ that is greater than

or equal to the actual list length. Go n′ positions into the list, save a pointer to this node, and
then travel an additional n′ entries. If you hit the null pointer, report that the list “ends”. If you
hit your saved pointer, report that the list “loops.” This algorithm will succeed if n′ ≥ n, where
n is the actual number of elements in the list. To make this efficient, try n′ = 2, 4, 8, . . . , 2k. By a
geometric series, it can be shown that this runs in O(n) time.

5


