CMSC 420 Dave Mount

CMSC 420: Lecture 4
Binary Search Trees

Searching: Searching is among the most fundamental problems in data structure design. Our
objective is to store a set of entries {ei1,...,e,}, where each e; is a pair (z;,v;), where x;
is a key value drawn from some totally ordered domain (e.g., integers or strings) and v; is
an associated data value. The data value is not used in the search itself, but is needed by
whatever application is using our data structure.

We assume that keys are unique, meaning that no two entries share the same key. Given an
arbitrary search key x, the basic search problem is determining whether there exists an entry
matching this key value. To implement this, we will assume that we are given two types, Key
and Value. We will also assume that key values can be compared using the usual comparison
operators, such as <, >, ==. We make no assumptions about Value, since it is used by the
application only. (We will discuss Java implementation at the end of the lecture.)

The Dictionary (Map) ADT: A dictionary (also called a map) is an ADT that supports the
operations insert, delete, and find:

void insert(Key x, Value v): Stores an entry with the key-value pair (z,v). We assume
that keys are unique, and so if this key already exists, an error condition will be signaled
(e.g., an exception will be thrown).

void delete(Key x): Delete the entry with x’s key from the dictionary. If this key does not
appear in the dictionary, then an error conditioned is signaled.

Value find(Key x): Determine whether there is an entry matching z’s key in the dictionary?
If so, it returns a reference to associated value. Otherwise, it returns a null reference.

There are a number of additional operations that one may like to support, such as iterating
the entries, answering range queries (that is, reporting or counting all objects between some
minimum and maximum key values), returning the kth smallest key value, and computing
set operations such as union and intersection.

There are three common methods for storing dictionaries: sorted arrays, search trees, and
hashing. We will discuss the first two in this a subsequent lectures. (Hashing will be presented
later this semester.)

Sequential Allocation: The most naive approach for implementing a dictionary data structure
is to simply store the entries in a linear array without any sorting. To find a key value, we
simply run sequentially through the list until we find the desired key. Although this is simple,
it is not efficient. Searching and deletion each take O(n) time in the worst case, which is very
bad if n (the number of items in the dictionary) is large. Although insertion only involves
O(1) to insert a new item at the end of the array (assuming we don’t overflow), it would
require O(n) time to check that we haven’t inserted a duplicate element.

An alternative is to sort the entries by key value. Now, binary search can be used to locate
a key in O(logn) time, which is much more efficient. (For example, if n = 10, log, n is only
around 20.) While searches are fast, updates are slow. Insertion and deletion require O(n)
time, since the elements of the array must be moved around to make space.

Binary Search Trees: In order to provide the type of rapid access that binary search offers, but
at the same time allows efficient insertion and deletion of keys, the simplest generalization

Lecture 4 1 Fall 2020

CMSC 420 Dave Mount

is called a binary search tree. The idea is to store the records in the nodes of a binary tree.
FEach node, called a BSTNode, stores a key, key, and an associated value, value.

These nodes are organized so that an inorder traversal visits the nodes in increasing key order.
In particular, if x is the key stored in some node, then the left subtree contains all keys that
are less than z, and the right subtree stores all keys that are greater than z (see Fig. 1(a)).
(Recall that we assume that keys are distinct, so no other key can be equal to x.)

find(5) find(14)

Fig. 1: A possible binary search tree for the key set {1,2,4,5,7,8,9,11,13,15,16,17,18,21,22} and
the searcg paths for £ind(5) and find (14).

Search in Binary Search Trees: The search for a key x proceeds as follows. We start by as-
signing a pointer p to the root of the tree. We compare x to p’s key, that is, p.key. If they
are equal, we have found it and we are done. Otherwise, if = is smaller, we recursively search
p’s left subtree, and if z is larger, we recursively visit p’s right subtree. The search proceeds
until we either find the key (see Fig. 1(b)) or we fall out of the tree (see Fig. 1(b)). The code
block below shows a possible pseudocode implementation of the find operation. The initial
call is find(x, root), where root is the root of the tree. It is easy to see based on the
definition of a binary tree why this is correct.

Recursive Binary Tree Search

Value find(Key x, BSTNode p) {

if (p == null) return null; // unsuccessful search
else if (x < p.key) // x is smaller?
return find(x, p.left); // ... search left
else if (x > p.key) // x is larger?
return find(x, p.right); // ... search right
else return p.value; // successful search

Query time: What is the running time of the search algorithm? Well, it depends on the key you
are searching for. In the worst case, the search time is proportional to the height of the tree.
The height of a binary search tree with n entries can be as low as O(logn) for the case of
balanced tree (see Fig. 2 left) or as large as O(n) for the case of a degenerate tree (see Fig. 2
right). However, we shall see that if the keys are inserted in random order, the expected
height of the tree is just O(logn).

Can we devise ways to force the tree height to be O(logn)? The answer is yes, and in future
lectures we will see numerous approaches for guaranteeing this.

Insertion: To insert a new key-value entry (x,v) in a binary search tree, we first try to locate the
key in the tree. If we find it, then the attempt to insert a duplicate key is an error. If not,

Lecture 4 2 Fall 2020

CMSC 420 Dave Mount

Balanced: Height = O(logn) Degenerate: Height = O(n)

Fig. 2: Balanced and degenerate binary trees.

we effectively “fall out” of the tree at some node p. We insert a new leaf node containing
the desired entry as a child of p. It turns out that this is always the right place to put the
new node. (For example, in Fig. 3, we fall out of the tree at the left child of node 15, and we
insert the new node with key 14 here.)

insert(14)

Fig. 3: Binary tree insertion.

This can naturally be implemented recursively. If the inserted key is smaller than the current
node’s key, we insert recursively on the left. If it is greater, we insert on the right. (It cannot
be equal, or we have a duplicate key!) When we fall out of the tree (a null link), we create a
new node here. The pseudocode is presented in the code block below. The initial call is root
= insert(x, v, root). We assume that there is a constructor for the BSTNode, which is
given the key, value, and the initial values of the left and right child pointers.

Recursive Binary Tree Insertion
BSTNode insert(Key x, Value v, BSTNode p) {

if (p == null) // fell out of the tree?
p = new BSTNode(x, v, null, null); // ... create a new leaf node here
else if (x < p.key) // x is smaller?
p-left = insert(x, v, p.left); // ...insert left
else if (x > p.key) // x is larger?
p.right = insert(x, v, p.right); // ...insert right
else throw DuplicateKeyException; // x is equal ...duplicate key!
return p // return ref to current node (sneaky!)

Coding Trick: (Be sure you understand this!) You will see one technical oddity in the above
pseudocode implementation. Consider the line: “p.left = insert(x, v, p.left)”. Why

Lecture 4 3 Fall 2020

CMSC 420 Dave Mount

does the insert function return a value, and why do we replace the left-child link with this
value?

Here is the issue. Whenever we create the new node, we need to “reach up” and modify
the appropriate child link in the parent’s node. Unfortunately, this is not easy to do in our
recursive formulation, since the parent node is not a local variable. To do this, our insert
function will return a reference to the modified subtree after the insertion. We store this
value in the appropriate child pointer for the parent.

To better understand how our coding trick works, let’s refer back to Fig. 3. Let p; denote
the node containing 15. Since 14 < 15, we effectively invoked the command “pl.left =
insert(x, v, pl.left)”. But since this node has no left child (pl.left == null), this
recursive call creates a new BSTNode containing 14 and returns a pointer to it, call it po.
Since this is the return value from the recursive call, we effectively have executed “pl.left
= p2”, thus linking the 14 node as the left child of the 15 node. Slick!

Deletion: Next, let us consider how to delete an entry from the tree. Deletion is a more involed
than insertion. While insertion adds nodes at the leaves of the tree, but deletions can occur
at any place within the tree. Deleting a leaf node is relatively easy, since it effectively involves
“undoing” the insertion process (see Fig. 4(a)). Deleting an internal node requires that we
“fill the hole” left when this node goes away. The easiest case is when the node has just
a single child, since we can effectively slide this child up to replace the deleted node (see
Fig. 4(b)).

Leaf deletion Single-child case

delete(8) @

delete(7) @

"(roplacc) e
) @ (b)

Fig. 4: Deletion: (a) Leaf and (b) single-child case.

(a

The hardest case is when the deleted node that has two children. Let p denote the node to
be deleted (see Fig. 5(a)):

e First off, we we need to find a suitable replacement node, whose key /value will fill the
hole left by deletion. We can either take the largest key from p’s left subtree (its inorder
predecessor) or the smallest key from its right subtree (its inorder successor). Let’s
arbitrarily decide to do the latter. Call this node 7 (see Fig. 5(b)). Note that because p
has two children, its inorder successor is the “leftmost” node of p’s right subtree. Call r
the replacement node.

e Copy the contents of r (both key and value) to p (see Fig. 5(c)).
e Recursively delete node r from p’s right subtree (see Fig. 5(d)).

Lecture 4 4 Fall 2020

CMSC 420 Dave Mount

delete(3) Two-Child Case

Fig. 5: Deletion: Two-child case.

It may seem that we have made no progress, because we have just replaced one deletion
problem (for p) with another (for r). However, the task of deleting r is much simpler. The
reason is, since r is p’s inorder successor, 7 is the leftmost node of p’s right subtree. It follows
that r has no left child. Therefore, r is either a leaf or it has a single child, implying that it
is one of the two “easy” deletion cases that we discussed earlier.

Deletion Implementation: Before giving the code for deletion, we first present a utility function,
findReplacement (), which returns a pointer to the node that will replace p in the two-child
case. As mentioned above, this is the inorder successor of p, that is, the leftmost node in
p’s right subtree. As with the insertion method, the initial call is made to the root of the
tree, delete(x, root). Again, we will employ the sneaky trick of returning a pointer to the
revised subtree after deletion, and store this value in the child link. See the code fragment

below.
Replacement Node for the Two-child Case
BSTNode findReplacement(BSTNode p) { // find p’s replacement node
BSTNode r = p.right; // start in p’s right subtree
while (r.left !'= null) r = r.left; // go to the leftmost node
return r;
}

The full deletion code is given in the following code fragment. As with insertion, the code
is quite tricky. For example, can you see where the leaf and single-child cases are handled
in the code? We do not have a conditional that distinguishes between these cases. How can
that be correct. (But it is!)

Analysis of Binary Search Trees: It is not hard to see that all of the procedures find(),
insert(), and delete() run in time that is proportional to the height of the tree being
considered. (The delete() procedure is the only one for which this is not obvious. Because
the replacement node is the inorder successor of the deleted node, it is the leftmost node of
the right subtree. This implies that the replacement node has no left child, and so it will fall
into one of the easy cases, which do not require a recursive call.)

Lecture 4 5 Fall 2020

CMSC 420 Dave Mount

Binary Tree Deletion

BSTNode delete(Key x, BSTNode p) {

if (p == null) // fell out of tree?
throw KeyNotFoundException; // ...error - no such key
else {
if (x < p.data) // look in left subtree
p-left = delete(x, p.left);
else if (x > p.data) // look in right subtree
p.-right = delete(x, p.right);
// found it!
else if (p.left == null || p.right == null) { // either child empty?
if (p.left == null) return p.right; // return replacement node
else return p.left;
}
else { // both children present
r = findReplacement (p); // find replacement node
copy r’s contents to p; // copy its contents to p
p.right = delete(r.key, p.right); // delete the replacement
}
}
return p;

The question is, given a binary search tree T containing n keys, what can be said about the
height of the tree? It is easy to devise “terrible” insertion orders so that the tree has the worst
possible height of n — 1. Conversely, it is possible to devise “perfect” insertion orders, which
result in a balanced tree of height |logyn]|. (As an exercise, think about how you would do
either of these.)

Since the worst case is obviously very bad, let’s consider the expected case. Suppose that the
keys are inserted in random order. To be more precise, given n keys, let us assume that each
of the n! insertion orders is equally likely. What is the expected height of the resulting tree?
It turns out to be pretty good!

Theorem: Given a set of n keys x1 < x93 < ... < xy,, let H(n) denote the expected height
of a binary search tree, under the assumption that every one of the n! insertion orders
is equally likely. Then H(n) = O(logn).

Proving this is not an trivial exercise. (If you saw the expected-case analysis for Quicksort in
CMSC 351, it is quite similar.)

Quick and Dirty Analysis: (Optional)

Rather than give the full proof, we will provide a much simpler one, which will hopefully
convince you that the assertion is reasonable. Instead of proving that every node of the tree
is at expected depth O(logn), we will prove that the leftmost node of the tree (that is, the
node associated with the smallest key value) will be at expected depth O(logn).

Theorem: Given a set of n keys 1 < x5 < ... < xp, let D(n) denote the expected depth
of leftmost node x; after inserting all these keys in a binary search tree, under the
assumption that all n! insertion orders are equally likely. Then D(n) < 1+ Inn, where
In denotes the natural logarithm.

Lecture 4 6 Fall 2020

CMSC 420 Dave Mount

Proof: We will track the depth of the leftmost node of the tree through the sequence of

Lecture 4

| o OB
e & @ o S0 & @
D -@® G @O

D -@ O

insertions. Suppose that we have already inserted 7 — 1 keys from the sequence, and we
are in the process of inserting the ith key. The only way that the leftmost node changes
is when the ith key is the lowest key value that has been seen so far in the sequence.
That is, the ¢ element to be inserted in the new minimum value among all the keys in
the tree.

For example, consider the insertion sequence S = (9,5, 10,6,3,4,2). Observe that the
minimum value changes three times, when 5, 3, and 2 are inserted. If we look at the
binary tree that results from this insertion sequence we see that the depth of the leftmost
node also increases by one with each of these insertions.

Insertion order: (9,5, 10,6, 3,4,2)

insert(5) insert(10

O RG Me)

insert(6) insert(3 insert(4 insert(2

(3)
(9)

Fig. 6: Length of the leftmost chain.

To complete the analysis, it suffices to determine (in expectation) the number of times
that the minimum in a sequence of n random values changes. To make this formal, for
2 <1 <mn, let X; denote the random variable that is 1 if the ith element of the random
sequence is the minimum among the first i elements, and 0 otherwise. (In our sequence
S above, Xo = X5 = X7 = 1, because the minimum changed when the second, fifth, and
seventh elements were added. The remaining X;’s are zero.)

To analyze X;, let’s just focus on the first 7 elements and ignore the rest. Since every
permutation of the numbers is equally likely, the minimum among the first i is equally
likely to come at any of the positions first, second, ..., up to ith. The minimum changes
only if comes last out of the first i. Thus, Pr(X; = 1) = 1 and Pr(X; = 0) =1 - 1.
Whenever this random event occurs (X; = 1), the minimum has changed one more time.
Therefore, to obtain the expected number of times that the minimum changes, we just
need to sum the probabilities that X; =1, for i = 2,...,n. Thus we have

1 “1
D(n) = Zg = (ZZ) —1.
i=2 i=1

This summation is among the most famous in mathematics. It is called the Harmonic
Series. Unlike the geometric series (1/2%), the Harmonic Series does not converge. But
it is known that when n is large, its value is very close to Inn, the natural log of n. (In
fact, it is not more than 1+ Inn.)

Therefore, we conclude that the expected depth of the leftmost node in a binary search
tree under n random insertions is at most 1 + Inn = O(logn), as desired.

7 Fall 2020

CMSC 420 Dave Mount

Random Insertions and Deletions: Interestingly, the analysis of the expected-case tree height
breaks down if we perform both insertions and deletions. Suppose that we consider a very
long sequence of insertions and deletions, which occur at roughly the same rate so that, in
steady state, the tree has roughly n nodes. Let us also assume that insertions are random
(drawn say from some large domain of candidate elements) and deletions are random in the
sense that a random element from the tree is deleted each time.

It is natural to suppose that the O(logn) bound should apply, but remarkably it does not! It
can be shown that over a long sequence, the height of the tree will converge to a significantly
larger value of O(y/n).!

The reason has to do with the fact that the replacement element was chosen in a “biased”
manner, always taking the inorder successor. Over the course of many deletions, this repeated
bias causes the tree’s structure to skew away from the ideal. This can be remedied by
selecting the replacement node in an unbiased manner, choosing randomly between the inorder
successor or inorder predecessor. It has been shown experimentally that this resolves the issue,
but (to the best of my knowledge) it is not known whether the expected height of this balanced
version of deletion matches the expected height for the insertion-only case (see Culberson and
Munro, Algorithmica, 1990).

Java Implementation: So far, we have been expressing our functions in pseudocode. Defining
a binary search tree object in a modern object-oriented language like Java would be done
in a slightly different manner. First, rather than fixing the types Key and Value, we would
make the parameterized (generic) types. Let’s call these K and V, respectively. We should not
assume that we can simply apply operators such as “<”, “>” and “==" for comparing keys.
For this reason, we will assume that our K object implements the Comparable<K> interface,
which means that it defines a method compareTo, which compares two objects of type K.

In order to implement nodes, the class BinarySearchTree can define an inner class, called
BSTNode. In Java, we can use the default access modifier. This means that the BSTNode mem-
bers are accessible within the same package but hidden from the outside. Public functions,
like find, insert, and delete, each invoke corresponding local functions, each of which is
invoked on the root of the tree. A partial example (showing just the find function) is shown
in the following code fragment.

!There is an interesting history regarding this question. It was believed for a number of years that random
deletions did not alter the structure of the tree. A theorem by T. N. Hibbard in 1962 proved that the tree structure
was probabilistically unaffected by deletions. The first edition of D. E. Knuth’s famous book on data structures, quotes
this result. In the mid 1970’s, Gary Knott, a Ph.D. student of Knuth and later a professor at UMD, discovered a
subtle flaw in Hibbard’s result. While the structure of the tree is probabilistically the same, the distribution of keys
is not. However, Knott could not resolve the asymptotic running time. The analysis showing that O(y/n) bound was
due to Culberson and Munro in the mid 1980’s.

Lecture 4 8 Fall 2020

CMSC 420 Dave Mount

(Partial) Java Binary Tree

public class BinarySearchTree<K extends Comparable<K>, V> {

class BSTNode { // A node of the tree
K key;
V value;
BSTNode left;
BSTNode right;

// ... other utility methods omitted
¥
V find(K x, BSTNode p) { // local find function
if (p == null) return null; // unsuccessful search
else if (x.compareTo(p.key) < 0) // x is smaller?
return find(x, p.left); // ... search left
else if (x.compareTo(p.key) > 0) // x is larger?
return find(x, p.right); // ... search right
else return p.value; // successful search
}
// ... other methods (insert, delete, ...) omitted
BSTNode root; // root of tree
public V find(K x) { // public find key
return find(x, root); // invoke local find
¥

Lecture 4 9 Fall 2020

