
CMSC 420 Dave Mount

CMSC 420: Lecture 17
Range Trees

Range Queries: The objective of range searching is to count or report the set of points of some
point set that lie within a given shape. The most well-known instance of range searching
is orthogonal range searching, where the shape is an axis-aligned rectangle. In our previous
lecture, we discussed the use of kd-trees for answering orthogonal range queries, where we
showed that if the tree is balanced, then the running time is close to O(

√
n) to count the

points in the range. Generally, if there are k points in the range, then we can report them
in total time O(k +

√
n). (The modification is that whenever we find a point or subtree that

lies within the range, we traverse the subtree and add all it points to the output.)

Count = 10

Q

Fig. 1: 2-Dimensional orthogonal range counting query.

In this lecture we will present a faster solution for answering these queries. We will consider the
problem in 2-dimensional space, but generalizations to higher dimensions are straightforward.
The data structures is called a range tree. Unlike kd-trees, which are general purpose and
can be applied to many different types of queries, range trees are designed especially for
orthogonal range queries. We will show that a range tree can answer orthogonal counting
range queries in the plane in time O(log2 n). (Recall that log2 n means (log n)2). If there are
k points in the range it can also report these points in O(k + log2 n) time. It uses O(n log n)
space, which is somewhat larger than the O(n) space used by kd-trees. (There are actually
two versions of range trees. We will present the simpler version. There is a significantly more
complex version that can answer queries in O(k + log n) time, thus shaving off a log factor
in the running time.) Range trees can be generalized to higher dimensions. In any constant
dimension d, it answers orthogonal range queries in O(logd n) time.

Layering: Range trees are of additional interest because they illustrate a more general technique
used in data structure design, called layering. Suppose that you want to design a data
structure that answers queries based on multiple criteria, all of which must be satisfied. (For
example, find all medical records where the patient was between ages alo and ahi, whose
weight is between wlo and whi, and whose blood pressure is between blo and bhi.) Suppose
we had data structures for answering each type of query individually. How can we use these
to build a data structure for answering finding the entries that satisfy all three. This can
be done by “layering” the individual data structures. (Which we will describe below.) This
is exactly how range trees work—they layer multiple 1-dimensional range trees to answer
multi-dimensional range queries. These are called multi-layer search trees.

1-dimensional Range Tree: Before discussing 2-dimensional range trees, let us first consider
what a 1-dimensional range tree would look like. Given a set S of scalar (say, real-valued)
keys, we wish to preprocess these points so that given a 1-dimensional interval Q = [lo,hi]

Lecture 17 1 Fall 2020

CMSC 420 Dave Mount

along the x-axis, we can count (or report) all the points that lie in this interval (see Fig. 2(a)).
There are a number of simple solutions to this, but we will consider a tree-based method,
because it readily generalizes to higher dimensions.

a b cde f ghi jk `

Qlo Qhi

Count = 8

m

Report = {h, k, b, d, `, j,m, f}

Q

a b cde f ghi jk ` m

d

< d ≥ d

root

size=6 size=7

Fig. 2: 1-dimensional range query.

Let us begin by storing all the points of our data set in the external nodes (leaves) of any
balanced binary search tree sorted by x-coordinates (e.g., an AVL tree). The data values in
the internal nodes will just be used for searching purposes. They may or may not correspond
to actual data values stored in the leaves. We assume that if an internal node contains a
value x0 then the leaves in the left subtree are strictly less than x0, and the leaves in the right
subtree are greater than or equal to x0 (see Fig. 2(b)). Each node p in this tree is implicitly
associated with a subset S(p) ⊆ S of elements of S that are in the leaves descended from p.
(For example S(root) = S.) We assume that for each node p, we store the number of leaves
that are descended from p, denoted p.size. Thus p.size is equal to the number of elements
in S(p).

Let us introduce a few definitions before continuing. Given the interval Q = [Qlo, Qhi], we say
that a node p is relevant to the query if S(p) ⊆ Q. That is, all the descendents of p lie within
the interval. If p is relevant, then clearly all of the nodes descended from p are also relevant. A
relevant node p is canonical if p is relevant, but its parent it not. The canonical nodes are the
roots of the maximal subtrees that are contained within Q (see Fig. 3(a)). For each canonical
node p, the subset S(p) is called a canonical subset. Because of the hierarchical structure of
the tree, it is easy to see that the canonical subsets are disjoint from each other, and they
cover the interval Q. In other words, the subset of points of S lying within the interval Q
is equal to the disjoint union of the canonical subsets. Thus, solving a range counting query
reduces to finding the canonical nodes for the query range, and returning the sum of their
sizes.

We claim that the canonical subsets corresponding to any range can be identified in O(log n)
time from this structure. Intuitively, given any interval [Qlo, Qhi], we search the tree to find
the leftmost leaf u whose key is greater than or equal to Qlo and the rightmost leaf v whose
key is less than or equal to Qhi. Clearly all the leaves between u and v (including u and v)
constitute the points that lie within the range. Since these two paths are of length at most
O(log n), there are at most O(2 log n) such trees possible, which is O(log n). To form the
canonical subsets, we take the subsets of all the maximal subtrees lying between u and v. In
Fig. 3(b), we illustrate this for the interval [2, 23]

There are a few different ways to map this intuition into an algorithm. Our approach will be
modeled after the approach used for range searching in kd-trees. We will maintain for each
node a cell C, which in this 1-dimensional case is just an interval [Clo, Chi]. As with kd-trees,
the cell for node p contains all the points in S(T).

Lecture 17 2 Fall 2020

CMSC 420 Dave Mount

31

1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31

3 7

4

12 15 20 24 27

14

9

22 29

25

17

u v

Qhi = 23Qlo = 2
(b)(a)

Qlo Qhi Q
Q

O(log n)
2

4

6

12 p.size

6

4 4 44

2 2 2 2 2 2 2

Fig. 3: The canonical subtrees for 1-dimensional range query.

The arguments to the procedure are the current node, the range Q, and the current cell. Let
C0 = [−∞,+∞] be the initial cell for the root node (or generally, any interval large enough
to contain all the points). The initial call is range1D(root, Q, C0).

Let p.x denote the key associated with the current node p, and let C = [x0, x1] denote the
current cell for node p. We assume that given two ranges A and B, we have utility functions
A.contains(B) which determined whether interval A contains interval B, and there is a
similar function A.contains(x) that determines whether A contains a single point x.

The processing considers the following cases. If we arrive at an external node, we check
whether the point stored in this external node is contained in Q, and if so, we we count it.
Otherwise we are at an internal node. First, if Q contains the entire cell C, then all the points
of this subtree lie within Q and we add p.size to the count (see Fig. 4(a)). Next, if Q is
entirely disjoint from C (that is, Q ∩ C = ∅), then none of p’s descendants can contribute to
the query and we return 0. Otherwise, Q and C partially overlap, and we recursively invoke
the search procedure on each subtree (see Fig. 4(c)). When we invoke the procedure on the
left subtree, we trim the cell to the left part [x0, p.x] and when we invoke the procedure on
the right subtree, we trim the cell to the right part [p.x, x1]. The recursive helper function
range1D(p, Q, C) is shown in the code block below.

(b)(a)

Qlo QhiQ

x0 C x1

C ⊆ Q

Qlo QhiQ

x0 C x1

C ∩Q = ∅

(c)

Qlo QhiQ

x0 C x1

C ∩Q = ∅

Fig. 4: Range search cases: (a) Q contains p’s cell, (b) Q is disjoint from p’s cell, (c) Q partially
overlaps p’s cell.

The external nodes counted in the second line and the internal nodes for which we return

Lecture 17 3 Fall 2020

CMSC 420 Dave Mount

1-Dimensional Range Counting Query
int range1Dx(Node p, Range Q, Interval C=[x0,x1]) {

if (p.isExternal) // hit the leaf level?

return (Q.contains(p.point) ? 1 : 0) // count if point in range

else if (Q.contains(C)) // Q contains entire cell?

return p.size // return entire subtree size

else if (Q.isDisjointFrom(C)) // no overlap

return 0

else

return range1Dx(p.left, Q, [x0, p.x]) + // count left side

range1Dx(p.right, Q, [p.x, x1]) // and right side

}

p.size are the canonical nodes. (To extend this from counting to to reporting, we simply
replace the step that counts the points in the subtree with a procedure that traverses the
subtree and prints the data in the leaves. Each tree can be traversed in time proportional to
the number of leaves in each subtree.) Combining the observations of this section we have
the following results.

Lemma: Given a (balanced) 1-dimensional range tree and any query range Q, in O(log n)
time we can compute a set of O(log n) canonical nodes p, such that the answer to the
query is the disjoint union of the associated canonical subsets S(p).

Theorem: 1-dimensional range counting queries can be answered in O(log n) time and range
reporting queries can be answered in O(k + log n) time, where k is the number of values
reported.

Range Trees: Now let us consider how to answer range queries in 2-dimensional space. We first
create 1-dimensional tree T as described in the previous section sorted by the x-coordinate
(see the left side of Fig. 5). For each internal node p of T , recall that S(p) denotes the
points associated with the leaves descended from p. For each node p of this tree we build a
1-dimensional range tree for the points of S(p), but sorted on y-coordinates (see the right side
of Fig. 5). This called the auxiliary tree associated with p. Thus, there are n − 1 auxiliary
trees, one for each internal node of T .

Notice that there is a significant amount of duplication here. Each point in a leaf of the
x-range tree arises in the sets S(p) for all of its ancestors p in the x-range tree. Since the tree
is assumed to be balanced, it has height O(log n), and therefore, each of the n points appears
in O(log n) auxilliary trees. Thus, the sum of the sizes of all the auxiliary trees is O(n log n).
The original tree itself contributes space of O(n). Thus, we have the following total space for
the 2-dimensional range tree.

Claim: The total size of an 2-dimensional range tree storing n keys is O(n log n).

Now, when a 2-dimensional range is presented we do the following. First, we invoke a variant
of the 1-dimensional range search algorithm to identify the O(log n) canonical nodes. (These
are shown in blue in the left side of Fig. 5.) For each such node p, we know that all the points
of the set lie within the x portion of the range, but not necessarily in the y part of the range.
So, for each of the nodes p of the canonical subtrees, we search the associated 1-dimensional

Lecture 17 4 Fall 2020

CMSC 420 Dave Mount

p

Qlo.x Qhi.x

Qhi.y

Qlo.y

S(p)

S(p)

p.aux

x-range tree

y-range tree

Fig. 5: 2-Dimensional Range tree.

auxiliary y-range and return a count of the resulting points. These counts are summed up
over all the auxiliary subtrees to obtain the final answer.

The algorithm given in the code block below is almost identical the previous one, except
that we make explicit reference to the x-coordinates in the search, and rather than adding
p.size to the count, we invoke a 1-dimensional version of the above procedure using the
y-coordinate instead. Let Q.x denote the x-portion of Q’s range, consisting of the interval
[Qlo.x,Qhi.x]. The function call Q.contains(p.point) is applied on both coordinates, but
the call Q.x.contains(C) only checks the x-part of Q’s range. The procedure range1Dy()

is the same procedure described above, except that it searches on y rather than x.

2-Dimensional Range Counting Query
int range2D(Node p, Range2D Q, Range1D C=[x0,x1]) {

if (p.isExternal) // hit the leaf level?

return (Q.contains(p.point) ? 1 : 0) // count if point in range

else if (Q.x.contains(C)) { // Q’s x-range contains C

[y0,y1] = [-infinity, +infinity] // initial y-cell

return range1Dy(p.aux.root, Q, [y0, y1]) // search auxiliary tree

}

else if (Q.x.isDisjointFrom(C)) // no overlap

return 0

else

return range2D(p.left, Q, [x0, p.x]) + // count left side

range2D(p.right, Q, [p.x, x1]) // and right side

}

Analysis: It takes O(log n) time to identify the canonical nodes in the x-range tree. For each of
these O(log n) nodes we make a call to a 1-dimensional y-range tree. When we invoke this
on the subtree rooted at a node p, the running time is O(log |S(p)|). But, |S(p)| ≤ n, so this

Lecture 17 5 Fall 2020

CMSC 420 Dave Mount

takes O(log n) time for each auxiliary tree search. Since we are performing O(log n) searches,
each taking O(log n) time, the total search time is O(log2 n). As above, we can replace the
counting code with code in range1Dy() with code that traverses the tree and reports the
points. This results in a total time of O(k + log2 n), assuming k points are reported.

Thus, each node of the 2-dimensional range tree has a pointer to a auxiliary 1-dimensional
range tree. We can extend this to any number of dimensions. At the highest level the d-
dimensional range tree consists of a 1-dimensional tree based on the first coordinate. Each
of these trees has an auxiliary tree which is a (d − 1)-dimensional range tree, based on the
remaining coordinates. A straightforward generalization of the arguments presented here
show that the resulting data structure requires O(n logd n) space and can answer queries in
O(logd n) time.

Theorem: Given an n-element point set in d-dimensional space (for any constant d) orthog-
onal range counting queries can be answered in O(logd n) time, and orthogonal range
reporting queries can be answered in O(k+logd n) time, where k is the number of entries
reported.

Lecture 17 6 Fall 2020

