Encoding 3-node as binary tree node

Some history:
- 2-3 Trees: Bayer 1972
- Red-black Trees: Guibas and Sedgewick 1978 (a binary variant of 2-3)
- Rumor - Guibas had two pens, red + black to draw with

Red-Black and AA-Trees

Rules:
1. Every node labeled red/black
2. Root is black
3. Nulls treated as if black
4. If node is red, both children are black
5. Every path, from root to null has same no. of black

Lemma: A red-black tree with n keys has height $O(\log n)$
Proof: It's at most twice that of a 2-3 tree.
Q: Is every Red-Black Tree the encoding of some 2-3 tree?

AA-Trees: Simpler to code
- No null pointers: Create a sentinel node, nil, and all nulls point to it \(\rightarrow\) nil.
- No colors: Each node stores level number. Red child is at same level as parent.
- Lemma: A red-black tree with n keys has height $O(\log n)$
Proof: It's at most twice that of a 2-3 tree.
Q: Is every Red-Black Tree the encoding of some 2-3 tree?

What we need are stricter rules!

AA-tree:
- Arne Anderson 1993
- New rule:
- Each red node can arise only as right child (of a black node)

Nope! Alternatives that satisfy rules:

A “left-skewed” encoding corresponds to 2-3-4 trees
Restructuring Ops:

- **Skew**: Restore right skew

 → If black node has red left child, rotate

 ![Diagram of skew correction](image)

 How to test? `p.left.level == p.level`

- **Split**: If a black node has a right-right red chain, do a left rotation on it right child `q`, and move `q`'s level up by one.

 ![Diagram of split](image)

 How to test? `p.level == p.right.level == p.right.right.level`

 not needed (levels are monotone)

Example:

- **2-3 Tree**:

 ![2-3 tree diagram](image)

 ![AA tree diagram](image)

 ![AA Insertion](image)

 ![Red-Black & AA Trees II](image)

 AA Insertion:

 - Find the leaf (as usual)
 - Create new red node
 - Back out applying skew + split

  ```
  AANode split(AANode p)
  {
    if (p == nil) return p
    if (p.right.right.level == p.level)
    {
      AANode q = p.right
      p.right = q.right; q.right = p
      return q ← new subtree root
    }
    else return p ← everything's fine
  }
  ```

 AANode skew(AANode p)
 {
 if (p == nil) return p
 if (p.left.level == p.level)
 {
 AANode q = p.left
 p.left = q.right; q.right = p
 return q ← new subtree root
 }
 else return p ← everything's fine
 }
Example:

```java
AANode insert(Key x, Value v, AANode p)
if (p == nil)
    p = new AANode(x, v, 1, nil, nil)
else if (x < p.key) ... insert on left
else if (x > p.key) ... insert on right
else Duplicate Key:
    return split(skew(p))
```

Red-Black and AA Trees III

Deletion:

Two more helpers:

- **updateLevel:** If p's level exceeds \(l = 1 + \min(p.left.level, p.right.level) \)
- **split:** Then set p's level to \(l \) and also p's right child

fix AfterDelete (p):
- update p's level
- skew (p), skew(p.right)
- skew (p.right.right)
- split(p), split(p.right)

deletion: Same as AVL deletion, but end with:
- return fix AfterDelete (p)