History:
1989: Seidel & Aragon
[Explosion of randomized algorithms]
Later discovered this was already known: Priority Search Trees from different context (geometry)
McCreight 1980

Intuition:
- Random insertion into BSTs \(\Rightarrow O(\log n)\) expected height
- Worst case can be very bad \(O(n)\) height
- Treap: A tree that behaves as if keys are inserted in random order

Example: Insert: k, e, b, o, f, h, w (Std. BST) 1 2 3 4 5 6 7

Along any path - Insertion times increase

Randomized Data Structures
- Use a random number generator
- Running in expectation over all random choices
- Often simpler than deterministic

Geometric Interpretation:

Treaps I

Obs: In a standard BST, keys are by inorder + insert times are in heap order (parent < child)

Example:

Treap: Each node stores a key + a random priority. Keys are in inorder. Priorities are in heap order.

? Is it always possible to do both?
Yes: Just consider the corresponding BST
Insertion: As usual, find the leaf and create a new leaf node.
- Assign random priority
- On backing out - check heap order and rotate to fix.

Theorem: A treap containing n entries has height $O(\log \log n)$ in expectation (averaged over all assignments of random priorities)

Proof: Follows directly from BST analysis

Implementation: (See pdf notes)
- **Node:** Stores priority + usual...
- **Helpers:**
 - lowest priority (p) returns node of lowest priority among:
 - **Restructure:** performs rotation (p.left, p.right) to put lowest priority node at p.
 - **Demotion:** c.success in c.parent

Example:

Deletion: (cute solution) Find node to delete. Set its priority to $+\infty$. Rotate it down to leaf level and unlink.

Example:

Treaps II