Other/Better Criteria?
- Expected case: Some keys more popular than others
- Self-adjusting: Tree adapts as popularity changes

How to design/analyze?
- Splay Tree: A self-adjusting binary search tree
 - No rules! (yay anarchy!)
 - No balance factors
 - No limits on tree height
 - No color/levels/priorities
 - Amortized efficiency:
 - Any single op - slow
 - Long series - efficient on avg.

Intuition: Let T be an unbalanced BST, suppose we access its deepest key

Recap: Lots of search trees
- Unbalanced BSTs
- AVL Trees
- 2-3, Red-black, AA Trees
- Treaps & Skip lists

Focus: Worst-case or randomized expected case

Lesson:
Different combinations of rotations can:
- bring given node to root
- significantly change (improve) tree structure.

Splay Trees 1

Final

Tree's height has reduced by ~ half!

Idea I: Rotate "a" to top
(Future accesses to "a" fast)

...final result:

Idea II: Rotate 2 at a time - upper + lower

still unbalanced
ZigZag(p): [LL case]

Splay (Key x):
Node p ← find (x) [nearest node]
while (p ≠ root) {
 if (p is child of root) zig(p)
 else /* p has grand parent */ zigzag(p)
}

insert (x):
splay (x)
g = new Node (x)
if (root.key < x)
x.left = root
x.right = root.right
root.right = null
else ... symmetrical...

find (x):
splay (x)
if (root.key == x)
 found!
else not found

Example: splay (3)

Subtrees A, C move up↑

ZigZigLPf: [LR case]

Subtrees A, C move up↑

ZigLPf: [L case]

Subtree A moves up↑

Subtrees C, E of p move up↑

Finals
Splay Trees III

Dynamic Finger Theorem:
- Key: x_1, \ldots, x_n. We perform
 accesses $x_{i_1}, x_{i_2}, \ldots, x_{i_m}$ Let
 $\Delta_j = i_j - i_{j-1}$ distance
 between consecutive
 items.
- Thm: Total access time is
 \[O(m+n \log n + \sum_{j=1}^m (1 + \log \Delta_j)) \]

Static Optimality:
- Suppose key x_i is accessed with
 prob p_i. \((\sum p_i = 1)\)
- Information Theory:
 - Best possible binary search
 tree answers queries in
 expected time $O(H)$ where
 \[H = \sum p_i \log \frac{1}{p_i} \]
 Entropy
- Given a seq. of m ops. on splay
tree with keys x_1, \ldots, x_n, where
 x_i is accessed q_i times. Let
 $p_i = q_i / m$. Then total time is
 \[O(m \sum p_i \log \frac{1}{p_i}) \]