Introduction to Parallel Computing (CMSC498X / CMSC818X)

Lecture 13: Parallel Algorithms

Abhinav Bhatele, Department of Computer Science

Announcements

- Assignment 2 is due on Oct 19
- Midterm on Oct 27
- Interim report due on November 16

Group project

- Check your email for project feedback
- Reply to email if you want to discuss further

Presentation	40
Final report and co	ode 40
Peer evaluation	20

• Peer evaluation: you are given \$100 that you will allocate as a performance bonus to your group members based on your assessment of their contributions to the project (you cannot keep any money for yourself)

Matrix multiplication

```
for (i=0; i<M; i++)
for (j=0; j<N; j++)
 for (k=0; k<L; k++)
  C[i][j] += A[i][k]*B[k][j];
```


https://en.wikipedia.org/wiki/Matrix_multiplication

Matrix multiplication

```
for (i=0; i<M; i++)
for (j=0; j<N; j++)
 for (k=0; k<L; k++)
  C[i][j] += A[i][k]*B[k][j];
```

Any performance issues for large arrays?

https://en.wikipedia.org/wiki/Matrix_multiplication

Blocking to improve cache performance

- Create smaller blocks that fit in cache: leads to cache reuse
- $C_{12} = A_{10} * B_{02} + A_{11} * B_{12} + A_{12} * B_{22} + A_{13} * B_{32}$

Parallel matrix multiply

- Store A and B in a distributed manner
- Communication between processes to get the right sub-matrices to each process
- Each process computes a portion of C

0		2	3
4	5	6	7
8	9	10	ΙΙ
12	13	14	15

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₀	A _{II}	A ₁₂	A ₁₃
A ₂₀	A ₂₁	A ₂₂	A ₂₃
A ₃₀	A ₃₁	A ₃₂	A ₃₃

B ₀₀	B ₀₁	B ₀₂	B ₀₃
B ₁₀	В	B ₁₂	B _{I3}
B ₂₀	B ₂₁	B ₂₂	B ₂₃
B ₃₀	B ₃₁	B ₃₂	B ₃₃

r			
0		2	3
4	5	6	7
8	9	10	11
12	13	14	15

	A ₀₀	A ₀₁	A ₀₂	A ₀₃
	A _{I0}	A _{II}	A ₁₂	A _{I3}
1	A ₂₀	A ₂₁	A ₂₂	A ₂₃
	A ₃₀	A ₃₁	A ₃₂	A ₃₃

B ₀₀	B ₀₁	B ₀₂	B ₀₃	†
B _{I0}	B _{II}	B ₁₂	B _{I3}	
B ₂₀	B ₂₁	B ₂₂	B ₂₃	
B ₃₀	B ₃₁	B ₃₂	B ₃₃	

Initial skew

r			
0		2	3
4	5	6	7
8	9	10	11
12	13	14	15

Initial skew

0		2	3
4	5	6	7
8	9	10	11
12	13	14	15

Shift-by-I

Agarwal's 3D matrix multiply

Copy A to all i-k planes and B to all j-k planes

0	l	2
3	4	5
6	7	8

B	00 /	В	10	B	20
B ₀₁		В		B ₂₁	

Agarwal's 3D matrix multiply

- Perform a single matrix multiply to calculate partial C
- All-to-all along i-j planes to calculate final result

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu