Introduction to Parallel Computing (CMSC498X / CMSC818X)

Lecture 16: Charm++

Abhinav Bhatele, Department of Computer Science

UNIVERSITY OF

MARYLAND

Announcements

e Assignment 3 will be posted on Oct 26 at midnight AoE

® Midterm will be posted on Oct 26 midnight AoE and due on Oct 27 midnight AoE

B DEPARTMENT OF :
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING 2

Hello world: .ci file

mainmodule hello {

readonly CProxy MyMain myMainProxy;
readonly int numChares;

malnchare MyMain {
entry MyMain(CkArgMsg *msqg);
entry void done(void);

}7

array [1D] Hello {
entry Hello(void);
entry volid sayHi(int);

}i
}7

s DEPARTMENT OF :
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING 3

Hello world: MyMain class

/*readonly*/ CProxy MyMain myMainProxy;
/*readonly*/ int numChares;

class MyMain: public CBase MyMain {

public:
MyMain (CkArgMsg* msg) {
numChares = atoi(msg->argv[l]); // number of elements

myMainProxy = thisProxy;
CProxy Hello helArrProxy = CProxy Hello::ckNew(numChares);

helArrProxy[0].sayH1(20);

volid done(void) {
ckout << ”“All done” << endl;
CKExit();

)
i

s DEPARTMENT OF :
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING 4

Hello world: Hello class

#include “hello.decl.h”
extern /*readonly*/ CProxy MyMain myMainProxy;

class Hello: public CBase Hello {
public:
Hello(void) { }

volid sayHi(int num) {
ckout << “Chare " << thisIndex << *“says Hi!” << num << endl;

1f(thisIndex < numChares-1)
thisProxy[thisIndex+l].sayHi(num+l);

else
myMainProxy.done();

#include “hello.def.h”

s DEPARTMENT OF :
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING 5

Proxy class

® Runtime needs to pack/unpack data and also figure out where the chare is

® Proxy class generated for each chare class

* Proxy objects know where the real object is

* Methods invoked on these proxy objects lead to messages being sent to the destination processor

B DEPARTMENT OF :
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING 6

Charm scheduler and message queue

® An object is scheduled by the runtime scheduler only when a message for it is
received

e Facilitates adaptive overlap of computation and communication

Processor 0 Processor 1 Processor N-1

Charm++ RTS/Converse

(e fm7s

Machine Layer

Charm++ RTS/Converse Charm++ RTS/Converse

o] temsys || || [shedoi] sz

Machine Layer Machine Layer

nierconne

S DEPARTMENT OF ,
i ‘__ COMPUTER SCIENCE Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING 7

Broadcast, barrier, and reduction

® Entry method called on a chare proxy without subscript is essentially a broadcast:

chareProxy.entryMethod()

® Barrier: reduction without arguments:

contribute();

e Reduction with arguments:

void contribute(int bytes, const void *data, CkReduction::reducerType type);

B DEPARTMENT OF :
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING 8

Callback for reduction

® Where does the output of the reduction go?

® Use a callback object known as a reduction client

CkCallback* cb = new CkCallback(CkIndex myType::myReductionFunction(NULL), thisProxy);
contribute(bytes, data, reducerType, cb);

e Use the reduction data in the callback:

volid myType: :myReductionFunction(CkReductionMsg *msg) ({
int size = msg->getSize() / sizeof(type);
type *output = (type *) msg->getData();

B DEPARTMENT OF :
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING 9

UNIVERSITY OF

MARYLAND

Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

