
Lecture 2: Terminology and Definitions
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC498X / CMSC818X)

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Announcements

• Piazza space for the course is live. Sign up link:

• https://piazza.com/umd/fall2020/cmsc498xcmsc818x

• Slides from previous class are posted online on the course website

• Recorded video is available via Panopto or ELMS

2

https://piazza.com/umd/fall2020/cmsc498xcmsc818x
https://piazza.com/umd/fall2020/cmsc498xcmsc818x

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Summary of last lecture

• Need for parallel and high performance computing

• Parallel architecture: nodes, memory, network, storage

3

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Cores, sockets, nodes

• CPU: processor

• Single-core or multi-core

• Core is a processing unit, multiple such units
on a single chip make it a multi-core processor

• Socket: same as chip or processor

• Node: packaging of sockets

4

https://www.glennklockwood.com/hpc-howtos/process-affinity.html

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Job scheduling

5

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Job scheduling

• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

5

Job Queue

#Nodes
Requested

Time
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Job scheduling

• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

5

Job Queue

#Nodes
Requested

Time
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Job scheduling

• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

5

Job Queue

#Nodes
Requested

Time
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

• Compute nodes: dedicated to each job

• Network, filesystem: shared by all jobs

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Compute nodes vs. login nodes

• Compute nodes: dedicated nodes for running jobs

• Can only be accessed when they have been allocated to a user by the job scheduler

• Login nodes: nodes shared by all users to compile their programs, submit jobs etc.

6

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Supercomputers vs. commodity clusters

• Supercomputer refers to a large expensive installation, typically using custom
hardware

• High-speed interconnect

• IBM Blue Gene, Cray XT, Cray XC

• Cluster refers to a cluster of nodes, typically put together using commodity (off-the-
shelf) hardware

7

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Serial vs. parallel code

• Thread: a thread or path of execution managed by the OS

• Share memory

• Process: heavy-weight, processes do not share resources such as memory, file
descriptors etc.

• Serial or sequential code: can only run on a single thread or process

• Parallel code: can be run on one or more threads or processes

8

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Scaling and scalable

• Scaling: running a parallel program on 1
to n processes

• 1, 2, 3, … , n

• 1, 2, 4, 8, …, n

• Scalable: A program is scalable if it’s
performance improves when using more
resources

9

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Scaling and scalable

• Scaling: running a parallel program on 1
to n processes

• 1, 2, 3, … , n

• 1, 2, 4, 8, …, n

• Scalable: A program is scalable if it’s
performance improves when using more
resources

9

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

0.1

1

10

100

1000

10000

Number of cores

1 4 16 64 256 1K 4K 16K

Actual
Extrapolation

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Weak versus strong scaling

• Strong scaling: Fixed total problem size as we run on more processes

• Sorting n numbers on 1 process, 2 processes, 4 processes, …

• Weak scaling: Fixed problem size per process but increasing total problem size as we
run on more processes

• Sorting n numbers on 1 process

• 2n numbers on 2 processes

• 4n numbers on 4 processes

10

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on p processes

• Efficiency: Speedup per process

11

Speedup =
t1
tp

Efficiency =
t1

tp × p

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

12

Speedup =
1

(1 − f) + f/p

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

12

Speedup =
1

(1 − f) + f/p

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

12

Speedup =
1

(1 − f) + f/p

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Amdahl’s law

13

Speedup =
1

(1 − p) + p/n

 fprintf(stdout,"Process %d of %d is on %s\n",
 myid, numprocs, processor_name);
 fflush(stdout);

 n = 10000; /* default # of rectangles */
 if (myid == 0)
 startwtime = MPI_Wtime();

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 h = 1.0 / (double) n;
 sum = 0.0;
 /* A slightly better approach starts from large i and works back */
 for (i = myid + 1; i <= n; i += numprocs)
 {
 x = h * ((double)i - 0.5);
 sum += f(x);
 }
 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

p = 60 s on 1 process

100 - p = 40 s on 1 process

Speedup =
1

(1 − 0.6) + 0.6/n

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Communication and synchronization

• Each process may execute serial code independently for a while

• When data is needed from other (remote) processes, messaging occurs

• Referred to as communication or synchronization or MPI messages

• Intra-node vs. inter-node communication

• Bulk synchronous programs: All processes compute simultaneously, then synchronize
together

14

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Different models of parallel computation

• SIMD: Single Instruction Multiple Data

• MIMD: Multiple Instruction Multiple Data

• SPMD: Single Program Multiple Data

• Typical in HPC

15

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

