
Lecture 4: Message Passing
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC498X / CMSC818X)

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Announcements

• Lecture schedule is online now

• Only use RHEL8 nodes on deepthought2

• Login: ssh <login>@rhel8.deepthought2.umd.edu

• Usage docs: https://hpcc.umd.edu/hpcc/help/usage.html

• Quickstart: http://www.cs.umd.edu/class/fall2020/cmsc498x/deepthought2.shtml

2

https://hpcc.umd.edu/hpcc/help/usage.html
http://www.cs.umd.edu/class/fall2020/cmsc498x/deepthought2.shtml
https://hpcc.umd.edu/hpcc/help/usage.html
http://www.cs.umd.edu/class/fall2020/cmsc498x/deepthought2.shtml

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Programming models

• Shared memory model: All threads have access to all of the memory

• Pthreads, OpenMP

• Distributed memory model: Each process has access to their own local memory

• Also sometimes referred to as message passing

• MPI, Charm++

• Hybrid models: Use both shared and distributed memory models together

• MPI+OpenMP, Charm++ (SMP mode)

3

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Distributed memory / message passing

• Each process can use its local memory for computation

• When it needs data from remote processes, it has to send messages

• PVM (Parallel Virtual Machine) was developed in 1989-1993

• MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released around 1994

• v2.0 - 1997

• v3.0 - 2012

4

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Message passing

• Each process runs in its own address space

• Access to only their memory (no shared data)

• Use special routines to exchange data

5

Process 0

Process 1

Time

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Message passing

• A parallel message passing program consists of independent processes

• Processes created by a launch/run script

• Each process runs the same executable, but potentially different parts of the program

• Often used for SPMD style of programming

6

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Message Passing Interface (MPI)

• It is an interface standard — defines the operations / routines needed for message
passing

• Implemented by vendors and academics for different platforms

• Meant to be “portable”: ability to run the same code on different platforms without modifications

• Some popular implementations are MPICH, MVAPICH, OpenMPI

7

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Hello world in MPI

8

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
 int rank, size;
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("Hello world! I'm %d of %d\n", rank, size);

 MPI_Finalize();
 return 0;
}

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Compiling and running an MPI program

• Compiling:

• Running:

9

mpicc -o hello hello.c

mpirun -n 2 ./hello

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Process creation / destruction

• int MPI_Init(int argc, char **argv)

• Initializes the MPI execution environment

• int MPI_Finalize(void)

• Terminates MPI execution environment

10

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Process identification

• int MPI_Comm_size(MPI_Comm comm, int *size)

• Determines the size of the group associated with a communicator

• int MPI_Comm_rank(MPI_Comm comm, int *rank)

• Determines the rank (ID) of the calling process in the communicator

• Communicator — a set of processes

• Default communicator: MPI_COMM_WORLD

11

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Send a message

12

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

buf: address of send buffer

count: number of elements in send buffer

datatype: datatype of each send buffer element

dest: rank of destination process

tag: message tag

comm: communicator

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Receive a message

13

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

buf: address of receive buffer

count: maximum number of elements in receive buffer

datatype: datatype of each receive buffer element

source: rank of source process

tag: message tag

comm: communicator

status: status object

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Simple send/receive in MPI

14

int main(int argc, char *argv) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int data;
 if (rank == 0) {
 data = 7;
 MPI_Send(&data, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if (rank == 1) {
 MPI_Recv(&data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("Process 1 received data %d from process 0\n", data);
 }

 ...
}

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

