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Announcements

• Assignment 2 has been posted

• Deadline: October 19, 11:59 pm AoE
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Shared memory programming

• All entities (threads) have access to the entire address space

• Threads “communicate” or exchange data by sharing variables

• User has to manage data conflicts 
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OpenMP

• OpenMP is an example of a shared memory programming model

• Provides on-node parallelization

• Meant for certain kinds of programs/computational kernels

• That use arrays and loops

• Hopefully easy to implement in parallel with small code changes
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OpenMP

• OpenMP is a language extension that enables parallelizing C/C++/Fortran code

• Programmer uses compiler directives and library routines to indicate parallel regions 
in the code

• Compiler converts code to multi-threaded code

• Fork/join model of parallelism
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Fork-join parallelism

• Single flow of control

• Master thread spawns worker threads
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Race conditions when threads interact

• Unintended sharing of variables can lead to race conditions

• Race condition: program outcome depends on the scheduling order of threads

• How can we prevent data races?

• Use synchronization

• Change how data is stored
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OpenMP pragmas

• Pragma: a compiler directive in C or C++

• Mechanism to communicate with the compiler

• Compiler may ignore pragmas
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#pragma omp construct [clause [clause] ... ]  
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• Compiling:

• Setting number of threads:

Hello World in OpenMP
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#include <stdio.h>
#include <omp.h>

int main(void)
{
    #pragma omp parallel
    printf("Hello, world.\n");
    return 0;
}

gcc -fopenmp hello.c -o hello

export OMP_NUM_THREADS=2
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Parallel for

• Directs the compiler that the immediately following for loop should be executed in 
parallel
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#pragma omp parallel for [clause [clause] ... ]
for (i = init; test_expression; increment_expression) {
    ...
    do work
    ...
} 
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Parallel for example
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int main(int argc, char **argv)
{
    int a[100000];

    #pragma omp parallel for
    for (int i = 0; i < 100000; i++) {
        a[i] = 2 * i;
    }

    return 0;
}
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Parallel for execution
• Master thread creates worker threads

• All threads divide iterations of the loop among themselves
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Master thread

Worker thread 1

Time

Worker thread 2

Worker thread 3

parallel for synchronize
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Number of threads

• Use environment variable

• Use omp_set_num_threads(int num_threads)

• Set the number of OpenMP threads to be used in parallel regions

• int omp_get_num_procs(void);

• Returns the number of available processors

• Can be used to decide the number of threads to create
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export OMP_NUM_THREADS=X
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Loop scheduling

• Assignment of loop iterations to different worker threads

• Default schedule tries to balance iterations among threads

• User-specified schedules are also available
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Data sharing defaults

• Most variables are shared by default

• Global variables are shared

• Exception: loop index variables are private by default

• Stack variables in function calls from parallel regions are also private to each thread 
(thread-private)
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