
Lecture 11: OpenMP
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC498X / CMSC818X)

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Announcements

• Assignment 2 has been posted

• Deadline: October 19, 11:59 pm AoE

2

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Shared memory programming

• All entities (threads) have access to the entire address space

• Threads “communicate” or exchange data by sharing variables

• User has to manage data conflicts

3

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

OpenMP

• OpenMP is an example of a shared memory programming model

• Provides on-node parallelization

• Meant for certain kinds of programs/computational kernels

• That use arrays and loops

• Hopefully easy to implement in parallel with small code changes

4

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

OpenMP

• OpenMP is a language extension that enables parallelizing C/C++/Fortran code

• Programmer uses compiler directives and library routines to indicate parallel regions
in the code

• Compiler converts code to multi-threaded code

• Fork/join model of parallelism

5

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Fork-join parallelism

• Single flow of control

• Master thread spawns worker threads

6

 https://en.wikipedia.org/wiki/OpenMP

https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/OpenMP

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Fork-join parallelism

• Single flow of control

• Master thread spawns worker threads

6

 https://en.wikipedia.org/wiki/OpenMP

https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/OpenMP

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Race conditions when threads interact

• Unintended sharing of variables can lead to race conditions

• Race condition: program outcome depends on the scheduling order of threads

• How can we prevent data races?

• Use synchronization

• Change how data is stored

7

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

OpenMP pragmas

• Pragma: a compiler directive in C or C++

• Mechanism to communicate with the compiler

• Compiler may ignore pragmas

8

#pragma omp construct [clause [clause] ...]

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

• Compiling:

• Setting number of threads:

Hello World in OpenMP

9

#include <stdio.h>
#include <omp.h>

int main(void)
{
 #pragma omp parallel
 printf("Hello, world.\n");
 return 0;
}

gcc -fopenmp hello.c -o hello

export OMP_NUM_THREADS=2

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallel for

• Directs the compiler that the immediately following for loop should be executed in
parallel

10

#pragma omp parallel for [clause [clause] ...]
for (i = init; test_expression; increment_expression) {
 ...
 do work
 ...
}

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallel for example

11

int main(int argc, char **argv)
{
 int a[100000];

 #pragma omp parallel for
 for (int i = 0; i < 100000; i++) {
 a[i] = 2 * i;
 }

 return 0;
}

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallel for execution
• Master thread creates worker threads

• All threads divide iterations of the loop among themselves

12

Master thread

Worker thread 1

Time

Worker thread 2

Worker thread 3

parallel for synchronize

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Number of threads

• Use environment variable

• Use omp_set_num_threads(int num_threads)

• Set the number of OpenMP threads to be used in parallel regions

• int omp_get_num_procs(void);

• Returns the number of available processors

• Can be used to decide the number of threads to create

13

export OMP_NUM_THREADS=X

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Loop scheduling

• Assignment of loop iterations to different worker threads

• Default schedule tries to balance iterations among threads

• User-specified schedules are also available

14

Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Data sharing defaults

• Most variables are shared by default

• Global variables are shared

• Exception: loop index variables are private by default

• Stack variables in function calls from parallel regions are also private to each thread
(thread-private)

15

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

