
Advanced Tree Structures

CMSC132



Degenerate Search Trees

● Standard BST only as good as 

its insertion order

● Very easy to make 

“degenerate”

10

20

15



Degenerate Search Trees

● Standard BST only as good as 

its insertion order

● Very easy to make 

“degenerate”

10

20

15

Insert: 12



Degenerate Search Trees

● Standard BST only as good as 

its insertion order

● Very easy to make 

“degenerate”

1210

20

15

Insert: 12

<



Degenerate Search Trees

● Standard BST only as good as 

its insertion order

● Very easy to make 

“degenerate”

10

20

15

Insert: 12

12 >



Degenerate Search Trees

● Standard BST only as good as 

its insertion order

● Very easy to make 

“degenerate”

10

20

15

Insert: 12

12 >



Degenerate Search Trees

● Standard BST only as good as 

its insertion order

● Very easy to make 

“degenerate”

● Congratulations, you have a 

linked list

● How long to find/insert/delete?

10

20

15

12



Modified Binary Search Trees

The real world often doesn’t use stock BSTs

Many of these covered in detail in CMSC420: Advanced Data Structures

Strategy Tree Type

Rotation AVL trees, red-black trees

Multi-way 2-3 trees

Rebuild Scapegoat trees

Randomization Treaps, Skiplists

Use case Tree Type

Strings Tries

File systems/db B/B+ trees

Usage frequency Splay trees

Multi-dimensional K-d trees



AVL Trees

● Invented by Adelson-Velsky 

and Landis in 1962

● Approach: keep height of 

subtrees roughly equal

● Strategy: when unequal, 

rebalance tree with rotations

● Outcome: worst case O(logn) 

performance

44

17 78

32 50 88

48 62

4

2

11

1
2

3

1

Inner nodes:

Leaf nodes:

Subtree heights:

x

y



Left Rotation

A moves down

C moves up



Left Rotation

A moves down

C moves up



Left Rotation

A moves down

C moves up

Fixes:

● C too tall

● A too short



Right rotation

A moves up

C moves down



Right rotation

A moves up

C moves down



Right rotation

A moves up

C moves down

Fixes:

● C too short

● A too tall



Problem

Left and right rotation move A & C up & down, but what about B?



Problem

Left and right rotation move A & C up & down, but what about B?

Rotate twice!



Left-Right Rotation

Let’s fix the height of B1/B2 - We’ve already seen this can’t be done with a single rotation



Left-Right Rotation

First, rotate left so that B2 moves up and A moves down



Left-Right Rotation

First, rotate left so that B2 moves up and A moves down

Then, rotate right so that C moves down and the subtree rooted at 1 moves up



Specific Left-Right Rotation Example

Rotated left 

around “10”

Rotated right 

around “15” to 

restore balance
Starting with 

unbalanced tree

● Insert 20, then 10, then 15 into an empty tree.

● Insertion of 15 unbalances the tree, so we must perform a LR rotation.



Right-Left Rotation

The same, but in reverse



Rotation Rules

● These 4 rotations allow an AVL tree to self rebalance

● Rotate based off of which grandchild is too tall

1. Left-left: right rotation

2. Left-right: left-right rotation

3. Right-left: right-left rotation

4. Right-right: left rotation



Implementation Details

Code for AVL trees is “relatively” simple:

1. Add extra field for keeping track of height in Node class

2. After modification, update appropriate height fields

3. After modification, rebalance at each level if needed

4. Key search as normal

Extra functions: rebalance, updateHeight, and rotations



Result

● Other trees can be more involved

● AVL isn’t perfect - Java uses red-black trees
○ AVL provides faster lookup and slower insert/remove

○ R-B provides faster insertion/removal and slower lookup

○ R-B uses slightly less storage

○ R-B is harder to do in a 30 minute presentation

● AVL Demo: 

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html


Resources

These are the notes from Professor David Mount’s CMSC420 class from Fall 2020.

http://www.cs.umd.edu/class/fall2020/cmsc420-0201/Lects/lect05-avl.pdf

http://www.cs.umd.edu/class/fall2020/cmsc420-0201/Slides/lect05-avl-slides.pdf

AVL trees on Wikipedia:

https://en.wikipedia.org/wiki/AVL_tree

http://www.cs.umd.edu/class/fall2020/cmsc420-0201/Lects/lect05-avl.pdf
http://www.cs.umd.edu/class/fall2020/cmsc420-0201/Slides/lect05-avl-slides.pdf
https://en.wikipedia.org/wiki/AVL_tree


References

1. Adel'son-Vel'skii, George M., and Evgenii Mikhailovich Landis. "An algorithm for organization of information." In Doklady 

Akademii Nauk, vol. 146, no. 2, pp. 263-266. Russian Academy of Sciences, 1962.

2. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT press, 2009.



End of presentation

(Subsequent slides include some notes for TAs & extra material on keeping track of 
node heights)



Keeping track of height

class Node {

T data;

Node left;

Node right;

int height;

}

int height(Node node) {

if (node == null) return 0;

return Math.max(height(node.left), 

height(node.right)) + 1;

}



Keeping track of height

class Node {

T data;

Node left;

Node right;

int height;

}

void updateHeight(Node node) {

if (node == null) return;

node.height = Math.max(height(node.left), 

height(node.right)) + 1;

}

int height(Node node) {

return node == null ? 0 : node.height;

}



TAs:

● Subtree heights and the height difference of subtrees is favored over the terminology “balance 

factor”

● TAs can theme the presentation however they wish, but colors of diagrams may be adversely 

affected


