
Regular Expressions. . .

What is it?
- describes a pattern in text
- uses:

- check if a certain (sub)string exists
- search/replace characters in a string

- CMSC330 goes more in depth
- https://regexr.com/ can be useful

https://regexr.com/

Basic RegEx Syntax

- In some languages, regular expressions are enclosed, in ‘/ ’ or like this r“abc”
- Not in Java

- Special characters like “\” must be escaped
- A guide on this: https://www.baeldung.com/java-regexp-escape-char

- the above matches:
- ”abc”, ”abcdef”, “defabc”, “.=abc==.=”

- but doesn’t match:
- “cba”, “fedcba”, “aBc”

/abc/

https://www.baeldung.com/java-regexp-escape-char

Start/End of line

- ^ : start of line
- $: end of line
- the above ONLY matches “abc”
- and doesn’t match anything else

- exercise: how can I match “apple” but not “apples”?

/^abc$/

Warning! Every character counts

- / s/ is NOT the same as / s/

- the first matches ONE space and then an “s”
- the second matches TWO spaces and then an “s”

Character Sets

- [] : used to define a character set
- the above matches only ONE letter from “b”, “c”, “d”, and then “art”
- so it matches: “bart”, “cart”, “dart”

- exercise: how can I match “A+”, “B+”, “A-”, and “B-” with ONE RegEx?

/[bcd]art/

Character Sets (continued, negated)

- ^ : when used initially inside a character set, negates it
- the above matches anything BUT “a”, “b”, or “c”
- so it matches ONLY the “g” in “agbc”
- NOTE: if used outside a character set, it means start of line

/[^abc]/

Character Ranges
- [A-Za-z] matches any letter

matches any character in “apple”, “bAnanA”, and “SUPERstiTION”

- [0-9] matches any digit

matches all in “123”, “092912”, and “2402831608”

- [A-Z0-9] matches any UPPERCASE letter or digit

matches any character in “A1”, “AREA51”, but nothing in “area”

Built-in Character Ranges
- \b : word boundary (spaces between words)
- \B: non-word boundary (spaces between characters)
- \d: any digit (equivalent to [0-9])
- \D: any non-digit (equivalent to [^0-9])
- \s: any whitespace character (spaces, tabs, newline, etc.)
- \S: any non-whitespace character
- \w: any word (equivalent to [A-Za-z0-9_])
- \W: any non-word

Character Range Examples
- /^\w\d$/ matches “A1”, “99”, “c6”, “_8”
- /^\s\D$/ matches “ s“ (tab), “ 0“ (space), “ “ (tab and a space, or vice versa)
- /^\S$/ matches any single character that’s not whitespace
- /^\w\W$/ matches “A+”, “B-”, “X “ (space), “_/“, “z^”

Other useful special characters
- * : repeats a character zero or more times

/a*/ matches “a” and “aa” and “” (empty)

- + : repeats a character one or more times

/b+/ matches “b” and “bbb” but NOT “” (empty)

- . : any character

/.at/ matches “cat”, “bat”, “rat”, etc. but NOT “at”

- {x} : specified number x of occurrences

/c{3}/ matches exactly 3 “c”s, /c{4,7}/ matches between 4 and 7 “c”s

Groups
- What if I wanted to extract certain substrings from a match?

- “cs.umd.edu/class/fall2020/cmsc132/” -> fall2020, cmsc132

- “cs.umd.edu/class/spring2020/cmsc389E/” -> spring2020, cmsc389E

- Need to use groups - marked with /(.*)/

- /cs[.]umd[.]edu\/class\/(fall|spring\d{4})\/(cmsc.*)/ would work CS class links

- Useful when you want to enforce a format, then take chunks of matches

- Escaped groups: same thing, just doesn’t save the substring
- Starts with ?: (?:cmsc.*)

https://www.cs.umd.edu/class/fall2020/cmsc132/
https://www.cs.umd.edu/class/fall2020/cmsc389E/

Look-around Groups
- Positive lookahead (?=...)

- Find expression A where expression B follows: A(?=B)

- Negative lookahead (?!...)
- Find expression A where expression B does not follow: A(?!B)

- Positive lookbehind (?<=...)
- Find expression A where expression B precedes: (?<=B)A

- Negative lookbehind (?<!...)
- Find expression A where expression B does not precede: (?<!B)A

How to use this in Java: Test and Replace
- Use these packages:

- import java.util.regex.*

- Pattern.matches tests a string:
- boolean matches = Pattern.matches(".*and.*", “Bread and butter”);

- True or false?

- String’s replaceAll: replace all pattern occurrences with ____:
- System.out.println("Magn1ficent7".replaceAll("(?<!n)\\d", "8")));

- What will that print?

How to use this in Java: Groups
- Can also pre-compile the regular expression into a Pattern object:

- Pattern morningPattern = Pattern.compile(".*morning.*");

- If groups are needed, use .matcher(...)
- Matcher matcher = mostAwesomePattern.matcher(contentString);

matcher.find()

System.out.println("First group: " + matcher.group(1));

- .find() returns false if nothing is found
- Group 0 is the whole match!

End of Presentation
- RegularExpressionsExample code in Eclipse!

