CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result
Languages and Machines

- Turing Machines
 - unrestricted grammars
 - PDAs
 - cfls
 - Regular Languages
 - reg exps
 - FSMs
 - Context-Free Languages
 - Recursive Languages
 - Recursively Enumerable Languages
A Few Questions About REs

- How are REs implemented?
 - Given an arbitrary RE and a string, how to decide whether the RE matches the string?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., \(e^+\) is the same as \(ee^*\)

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

- … next comes the math!
Definition: Alphabet

- **An alphabet** is a finite set of symbols
 - Usually denoted \(\Sigma \)

Example alphabets:
- **Binary:** \(\Sigma = \{0,1\} \)
- **Decimal:** \(\Sigma = \{0,1,2,3,4,5,6,7,8,9\} \)
- **Alphanumeric:** \(\Sigma = \{0-9,a-z,A-Z\} \)
Definition: String

A string is a finite sequence of symbols from Σ

- ϵ is the empty string ("" in Ruby)
- $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\epsilon| = 0$

Note
- \emptyset is the empty set (with 0 elements)
- $\emptyset \neq \{ \epsilon \}$ (and $\emptyset \neq \epsilon$)

Example strings over alphabet $\Sigma = \{0, 1\}$ (binary):

- 0101
- 0101110
- ϵ
Definition: Language

A language L is a set of strings over an alphabet.

Example: All strings of length 1 or 2 over alphabet $\Sigma = \{a, b, c\}$ that begin with a
- $L = \{ a, aa, ab, ac \}$

Example: All strings over $\Sigma = \{a, b\}$
- $L = \{ \varepsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots \}$
- Language of all strings written Σ^*

Example: All strings of length 0 over alphabet Σ
- $L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \}$
 "the set of strings s such that s is from Σ^* and has length 0"
 $= \{ \varepsilon \} \neq \emptyset$
Definition: Language (cont.)

- Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
 - Give an example element of this language \((123) 456-7890 \)
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language?
 \[/\ (\d{3,3})\ \d{3,3} -\d{4,4} / \]

- Example: The set of all valid (Runnable) Ruby programs
 - Later we’ll see how we can specify this language
 - (Regular expressions are useful, but not sufficient)
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

 - **Concatenation** L_1L_2 creates a language defined as
 - $L_1L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$

 - **Union** creates a language defined as
 - $L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \}$

 - **Kleene closure** creates a language defined as
 - $L^* = \{ x \mid x = \varepsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Operations Examples

Let $L_1 = \{ a, b \}$, $L_2 = \{ 1, 2, 3 \}$ (and $\Sigma = \{a,b,1,2,3\}$)

- What is L_1L_2?
 - $\{ a1, a2, a3, b1, b2, b3 \}$

- What is $L_1 \cup L_2$?
 - $\{ a, b, 1, 2, 3 \}$

- What is L_1^*?
 - $\{ \epsilon, a, b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, ... \}$
Quiz 1: Which string is **not** in L_3

$L_1 = \{a, \text{ab}, c, d, \varepsilon\}$ \hspace{1cm} where $\Sigma = \{a,b,c,d\}$

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. a
B. ad
C. ε
D. d
Quiz 1: Which string is **not** in L_3

$L_1 = \{a, \text{ab}, c, d, \varepsilon\}$ where $\Sigma = \{a, b, c, d\}$

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. a
B. ad
C. ε
D. d
Quiz 2: Which string is \textbf{not} in L_3

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\} \quad \text{where} \ \Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Quiz 2: Which string is not in L_3

$L_1 = \{a, \text{ab}, c, d, \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
We can define a grammar for regular expressions R

$R ::= \emptyset$ \quad \text{The empty language}

$| \varepsilon$ \quad \text{The empty string}

$| \sigma$ \quad A symbol from alphabet Σ

$| R_1 R_2$ \quad The concatenation of two regexps

$| R_1 | R_2$ \quad The union of two regexps

$| R^*$ \quad The Kleene closure of a regexp
Regular Languages

- Regular expressions denote languages. These are the regular languages
 - *aka* regular sets
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n \mid n > 0\}$ (a^n = sequence of n a’s)
- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Semantics: Regular Expressions (1)

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>$\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

Constants

*Ex: with $\Sigma = \{a, b\}$, regex a denotes language $\{a\}$
regex b denotes language $\{b\}$*
Semantics: Regular Expressions (2)

Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

- AB denotes $L_A L_B$
- $A|B$ denotes $L_A \cup L_B$
- A^* denotes L_A^*

There are no other regular expressions over Σ
Terminology etc.

- Regexps apply operations to symbols
 - Generates a set of strings (i.e., a language)
 - (Formal definition shortly)
 - Examples
 - a generates language \{a\}
 - $a|b$ generates language \{a\} \cup \{b\} = \{a, b\}
 - a^* generates language \{\epsilon\} \cup \{a\} \cup \{aa\} \cup \ldots = \{\epsilon, a, aa, \ldots \}

- If $s \in$ language L generated by a RE r, we say that r accepts, describes, or recognizes string s
Precedence

Order in which operators are applied is:

- Kleene closure $\ast >$ concatenation $>$ union $|$
- $ab|c = (a b) | c \rightarrow \{ab, c\}$
- $ab^* = a (b^*) \rightarrow \{a, ab, abb \ldots\}$
- $a|b^* = a | (b^*) \rightarrow \{a, \epsilon, b, bb, bbb \ldots\}$

We use parentheses () to clarify

- E.g., $a(b|c), (ab)^*, (a|b)^*$
- Using escaped \ if parens are in the alphabet
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition

- `/Ruby/` – concatenation of single-symbol REs
- `/(Ruby|Regular)/` – union
- `/(Ruby)/` – Kleene closure
- `/(Ruby)+/` – same as `(Ruby)(Ruby)*`
- `/(Ruby)?/` – same as `(ε|(Ruby))`
- `/[a-z]/` – same as `(a|b|c|...|z)`
- `/[0-9]/` – same as `(a|b|c|...)` for `a,b,c,... ∈ Σ - {0..9}`
- `^, $` – correspond to extra symbols in alphabet

Think of every string containing a distinct, hidden symbol at its start and at its end – these are written `^` and `$
Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
 - A “machine” for recognizing a regular language
Finite Automaton

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton

- Machine starts in start or initial state
- Repeat until the end of the string s is reached
 - Scan the next symbol $\sigma \in \Sigma$ of the string s
 - Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

0 0 1 0 1 1

Accepted?
Yes
Finite Automaton: Example 2

Accepted?
No
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1

regular expression for this language is (0|1)*1
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

string	state at end	accept s?
aabcc | |
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts?</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accept s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Quiz 4: Which string is not accepted?

A. bcca
B. abbbbc
C. ccc
D. ε

(a,b,c notation shorthand for three self loops)
Quiz 4: Which string is not accepted?

A. bccca
B. abbbbc
C. ccc
D. ϵ

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

What language does this FA accept?

a*b*c*

S3 is a dead state – a nonfinal state with no transition to another state - aka a trap state
Language?
\[a^*b^*c^* \] again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?
- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit
Finite Automaton: Example 5

- **S0** = “Haven't seen anything yet” OR “Last symbol seen was a b”
- **S1** = “Last symbol seen was an a”
- **S2** = “Last two symbols seen were ab”
- **S3** = “Last three symbols seen were abb”
Language as a regular expression?

(a|b)*abb
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single b.
B. Any string in $\{a,b\}$.
C. A string that starts with b followed by a’s.
D. One or more b’s, followed by zero or more a’s.
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single b.
B. Any string in \{a,b\}.
C. A string that starts with b followed by a’s.
D. One or more b’s, followed by zero or more a’s.
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{a,b\}$

- That accepts strings containing an even number of a’s and any number of b’s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s very immediately (right after, no other things in between) followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s

4 states:

0s 1s
e e e
o e e
e o o
o o o
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s

Flip each state