CMSC 330: Organization of Programming Languages

Lambda Calculus
Turing Machine

Infinite Tape

1 0 0 0 1 1 1 1 0

Read / Write Head

Control Unit
State: Y

START

HALT

2

3

4

START → 2: b; b, R
START → 3: b; b, R
START → 4: a; a, R
HALT → 2: e; e, R
HALT → 3: a; a, R
HALT → 4: a; a, R
3 → 2: b; b, R
3 → 4: b; b, R
4 → 2: b; b, R
4 → 3: b; b, R
Turing Completeness

- Turing machines are the most powerful description of computation possible
 - They define the Turing-computable functions
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton
So what language features are needed to express all computable functions?

- What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience

- Multi-argument functions
 - Use currying or tuples

- Loops
 - Use recursion

- Side effects
 - Use functional programming pass “heap” as an argument to each function, return it when with function’s result:

 effectful : ‘a → ‘s → (‘s * ‘a)
Programming Language Expressiveness

- It is not difficult to achieve Turing Completeness
 - Lots of things are ‘accidentally’ TC
- Some fun examples:
 - x86_64 `mov` instruction
 - Minecraft
 - Magic: The Gathering
 - Java Generics
- There’s a whole cottage industry of proving things to be TC
- But: What is a “core” language that is TC?
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 (born in Washington DC!)
- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell…
Why Study Lambda Calculus?

> It is a “core” language
 - Very small but still Turing complete

> But with it can explore general ideas
 - Language features, semantics, proof systems, algorithms, …

> Plus, higher-order, anonymous functions (aka *lambdas*) are now very popular!
 - C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), … (and functional languages like OCaml, Haskell, F#, …)
 - Excel, as of 2021!
Lambda Calculus Syntax

- A lambda calculus expression is defined as

 \[e ::= x \quad \text{variable} \]

 \[\lambda x.e \quad \text{abstraction (fun def)} \]

 \[e \ e \quad \text{application (fun call)} \]

- This grammar describes ASTs; not for parsing - ambiguous!
- Lambda expressions also known as lambda terms

- \(\lambda x.e \) is like (fun x -> e) in OCaml

That’s it! Nothing but higher-order functions
Three Conventions

- Scope of \(\lambda \) extends as far right as possible
 - Subject to scope delimited by parentheses
 - \(\lambda x. \lambda y. x \ y \) is same as \(\lambda x. (\lambda y. (x \ y)) \)

- Function application is left-associative
 - \(x \ y \ z \) is \((x \ y) \ z \)
 - Same rule as OCaml

- As a convenience, we use the following “syntactic sugar” for local declarations
 - \(\text{let } x = e1 \ \text{in } e2 \) is short for \((\lambda x.e2) \ e1 \)
Quiz #1

\(\lambda x. (y \ z) \) and \(\lambda x. y \ z \) are equivalent

A. True
B. False
Quiz #1

\(\lambda x. (y \ z) \) and \(\lambda x. y \ z \) are equivalent

A. True
B. False
Quiz #2

This term is equivalent to which of the following?

\[\lambda x. x a b \]

A. \((\lambda x. x) (a b)\)
B. \(((\lambda x. x) a) b)\)
C. \(\lambda x. (x (a b))\)
D. \((\lambda x. ((x a) b))\)
Quiz #2

This term is equivalent to which of the following?

\[\lambda x. x \ a \ b \]

A. \((\lambda x. x) \ (a \ b)\)
B. \(((\lambda x. x) \ a) \ b\)
C. \(\lambda x. (x (a \ b))\)
D. \((\lambda x. (((x a) \ b))\)
But what does it mean?

- Many ways to define the semantics of LC
- We will look at two
 - Operational Semantics
 - Definitional Interpreter
Lambda Calculus Semantics

- Evaluation: All that’s involved are function calls\((\lambda x.e1)\ e2\)
 - Evaluate \(e1\) with \(x\) replaced by \(e2\)
- This application is called **beta-reduction**
 - \((\lambda x.e1)\ e2 \rightarrow e1[x:=e2]\)
 - \(e1[x:=e2]\) is \(e1\) with occurrences of \(x\) replaced by \(e2\)
 - This operation is called **substitution**
 - **Replace** formals with actuals
 - Instead of using environment to map formals to actuals
 - **We allow reductions to occur any\(\textit{where}\) in a term**
 - Order reductions are applied does not affect final value!
- When a term **cannot be reduced further** it is in beta normal form
Beta Reduction Example

\[(\lambda x. \lambda z. x \ z) \ y\]
\[\rightarrow (\lambda x. (\lambda z. (x \ z))) \ y\] // since \(\lambda\) extends to right
\[\rightarrow (\lambda x. (\lambda z. (x \ z))) \ y\] // apply \((\lambda x. e_1) \ e_2 \rightarrow e_1[x:=e_2]\)
\[\rightarrow \lambda z. (y \ z)\] // where \(e_1 = \lambda z. (x \ z), \ e_2 = y\)

Equivalent OCaml code

\[
\text{• (fun x -\rightarrow (fun z -\rightarrow (x z))) y -\rightarrow fun z -\rightarrow (y z)}
\]

Parameters

• Formal
• Actual
Big-Step Operational Semantics

- Beta reduction says how to evaluate a single call
 - It doesn’t say how to evaluate a term with many function calls in it
- We can use operational semantics to “fully evaluate” a term in one “big step”
Two Varieties

- There are two common variants of big-step semantics
 - *Eager* evaluation (aka *strict*, or *call by value*)
 - *Lazy* evaluation (aka *call by name*)
Eager

- Notice that we evaluated the argument e_2 before performing the beta-reduction
 - This is the first version we saw
- Hence, *eager*

\[
(\lambda x. e_1) \Downarrow (\lambda x. e_1)
\]

\[
e_1 \Downarrow (\lambda x. e_3) \quad e_2 \Downarrow e_4 \quad e_3[x:=e_4] \Downarrow e_5
\]

\[
e_1 \; e_2 \Downarrow e_5
\]
Lazy

- Alternatively, we could have performed beta reduction *without* evaluating \(e_2 \); use it as is
 - Hence, *lazy*

\[
\begin{align*}
(\lambda x. e_1) & \Downarrow (\lambda x. e_1) \\
\lambda x. e_3 & \Downarrow e_4 \\
e_1 \Downarrow (\lambda x. e_3) & \quad e_3[x:=e_2] \Downarrow e_4 \\
e_1 \Downarrow e_4
\end{align*}
\]
Small Step Semantics

- Operational semantics rules we have seen have always been “big step”, i.e., complete evaluation
 - $e \Downarrow e'$ says that e will *terminate* as e'

- This is a little unsatisfying
 - It doesn’t account for nontermination
 - It doesn’t identify where a program fails to progress

- **Small-step semantics** addresses these problems
 - $e \rightarrow e'$ in small-step says e *takes one step* to e'
 - We say a term e_1 can be *beta-reduced* to term e_2 if e_1 steps to e_2 after one or more steps
Small-Step Rules of LC

Here are the “small-step” (→) rules:

\[
\begin{align*}
 &e_1 \rightarrow e_2 \\
 &e_1 e_2 \rightarrow e_1 e_3 \\
 &\lambda x.e_1 \rightarrow \lambda x.e_2 \\
 &e_2 \rightarrow e_3 \\
 &e_1 e_2 \rightarrow e_3 e_2 \\
 &\lambda x.e_1) e_2 \rightarrow e_1[x:=e_2]
\end{align*}
\]
Evaluation Strategies

These rules are highly flexible
 - It might be that for a given program, there are several possible rules that could apply

Typically, a programming language will choose an evaluation strategy which is described by using only a subset of these rules. Examples:
 - Call by Value
 - Call by Need
 - Partial Evaluation
Call by Value

- Before doing a beta reduction, we make sure the argument cannot, itself, be further evaluated
- This is known as call-by-value (CBV)
 - This is the Eager big step approach

\[
\begin{align*}
\text{e1} & \rightarrow \text{e3} \\
\text{e1 e2} & \rightarrow \text{e3 e2}
\end{align*}
\]

\[
\begin{align*}
\text{e2} & \rightarrow \text{e3} \\
\text{e1 e2} & \rightarrow \text{e1 e3}
\end{align*}
\]

\[
\text{e} = (\lambda x.\text{e2}) \text{ or } \text{e} = y
\]

\[
(\lambda x.\text{e1}) \text{ e} \rightarrow \text{e1}[x:=\text{e}]
\]
Beta Reductions (CBV)

- \((\lambda x.x)\) \(z \rightarrow z\)
- \((\lambda x.y)\) \(z \rightarrow y\)
- \((\lambda x.x\ y)\) \(z \rightarrow z\ y\)
 - A function that applies its argument to \(y\)
Beta Reductions (CBV)

- \((\lambda x. x \ y) \ (\lambda z. z) \rightarrow (\lambda z. z) \ y \rightarrow y\)

- \((\lambda x. \lambda y. x \ y) \ z \rightarrow \lambda y. z \ y\)
 - A curried function of two arguments
 - Applies its first argument to its second

- \((\lambda x. \lambda y. x \ y) \ (\lambda z. zz) \ x \rightarrow (\lambda y. (\lambda z. zz)y) x \rightarrow (\lambda z. zz) x \rightarrow x \ x\)
Quiz #3

\((\lambda x. y)\ z\) can be beta-reduced to

A. \(y\)
B. \(y\ z\)
C. \(z\)
D. cannot be reduced
Quiz #3

$(\lambda x. y) \ z$ can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced
Quiz #4

Which of the following reduces to $\lambda z. z$?

a) $(\lambda y. \lambda z. x) z$

b) $(\lambda z. \lambda x. z) y$

c) $(\lambda y. y) (\lambda x. \lambda z. z) w$

d) $(\lambda y. \lambda x. z) z (\lambda z. z)$
Quiz #4

Which of the following reduces to $\lambda z. z$?

a) $(\lambda y. \lambda z. x) z$

b) $(\lambda z. \lambda x. z) y$

c) $(\lambda y. y) (\lambda x. \lambda z. z) w$

d) $(\lambda y. \lambda x. z) z (\lambda z. z)$
Evaluation Order

- The CBV rules we saw permit small-stepping either the function part or the argument part
 - If both are possible, the rules allow either one

 \[
 \begin{align*}
 e_1 \rightarrow e_3 \\
 e_1 \ e_2 \rightarrow e_3 \ e_2
 \end{align*}
 \]

 \[
 \begin{align*}
 e_2 \rightarrow e_3 \\
 e_1 \ e_2 \rightarrow e_1 \ e_3
 \end{align*}
 \]

- Here’s how we would require left-to-right order

 \[
 \begin{align*}
 e_1 \rightarrow e_3 \\
 e_1 \ e_2 \rightarrow e_3 \ e_2
 \end{align*}
 \]

 \[
 \begin{align*}
 e_1 = y \text{ or } e_1 = \lambda x. e \\
 e_2 \rightarrow e_3 \\
 e_1 \ e_2 \rightarrow e_1 \ e_3
 \end{align*}
 \]

- The second rule prohibits evaluating \(e_2\) except when \(e_1\) cannot be evaluated further
Call by Name

- Instead of the CBV strategy, we can specifically choose to perform beta-reduction before we evaluate the argument.
- This is known as call-by-name (CBN).
 - This is the Lazy small-step approach.

\[
\begin{align*}
e_1 \to e_3 \\
e_1 e_2 \to e_3 e_2
\end{align*}
\]

\[
(\lambda x. e_1) e_2 \to e_1[x:=e_2]
\]
CBN Reduction

- CBV
 - \((\lambda z.z) ((\lambda y.y) x) \rightarrow (\lambda z.z) x \rightarrow x\)

- CBN
 - \((\lambda z.z) ((\lambda y.y) x) \rightarrow (\lambda y.y) x \rightarrow x\)
Beta Reductions (CBN)

$$(\lambda x. x \ (\lambda y. y)) \ (u \ r) \rightarrow$$

$$(\lambda x. (\lambda w. x \ w)) \ (y \ z) \rightarrow$$
Beta Reductions (CBN)

\[(\lambda x. x (\lambda y. y)) \ (u \ r) \rightarrow (u \ r) \ (\lambda y. y)\]

\[(\lambda x.(\lambda w. x \ w)) \ (y \ z) \rightarrow (\lambda w. \ (y \ z) \ w)\]
Why Does This Matter?

- The rules we just showed are very common for programming languages based on LC
 - CBV is the most common (e.g. OCaml, Java)
 - CBN does come up (Haskell uses a variant known as “call-by-need”) but is much less common
- Interestingly: more programs terminated under call-by-name. Can you think of why?
 - Consider: \((\lambda x. e2) \, e1\),
 - What if \(e1\) would never terminate, but \(e2\) would?
Partial Evaluation

- That rule is useful when you have a beta-reduction under a lambda:
 - \((\lambda y.(\lambda z.z) y \ x) \rightarrow (\lambda y. y \ x)\)

- Called **partial evaluation**
 - Can combine with CBN or CBV (just add in the rule)
 - In practical languages, this evaluation strategy is employed in a limited way, as compiler optimization

```c
int foo(int x) {
    return 0+x;
}
```

```c
int foo(int x) {
    return x;
}
```
Lambda calculus uses **static scoping**

Consider the following

\[(\lambda x.x \ (\lambda x.x)) \ z \rightarrow \ ? \]

- The rightmost “\(x\)” refers to the second binding
- This is a function that
 - Takes its argument and applies it to the identity function

This function is “the same” as \((\lambda x.x \ (\lambda y.y))\)

- Renaming bound variables consistently preserves meaning
 - This is called **alpha-renaming** or alpha conversion
- Ex. \(\lambda x.x = \lambda y.y = \lambda z.z\) \(\lambda y.\lambda x.y = \lambda z.\lambda x.z\)
Quiz #5

Which of the following expressions is alpha equivalent to (alpha-converts from)

\[(\lambda x. \lambda y. x \ y) \ y\]

a) \(\lambda y. \ y \ y\)
b) \(\lambda z. \ y \ z\)
c) \((\lambda x. \lambda z. x \ z) \ y\)
d) \((\lambda x. \lambda y. x \ y) \ z\)
Quiz #5

Which of the following expressions is alpha equivalent to (alpha-converts from)

$$(\lambda x. \lambda y. x \ y) \ y$$

a) $\lambda y. y \ y$
b) $\lambda z. y \ z$
c) $$(\lambda x. \lambda z. x \ z) \ y$$
d) $$(\lambda x. \lambda y. x \ y) \ z$$
Getting Serious about Substitution

- We have been thinking informally about substitution, but the details matter.
- So, let’s carefully formalize it, to help us see where it can get tricky!
Defining Substitution

- Use recursion on structure of terms
 - \(x[x:=e] = e \) // Replace \(x \) by \(e \)
 - \(y[x:=e] = y \) // \(y \) is different than \(x \), so no effect
 - \((e_1 e_2)[x:=e] = (e_1[x:=e]) (e_2[x:=e])\)
 // Substitute both parts of application
 - \((\lambda x. e')[x:=e] = \lambda x. e'\)
 - In \(\lambda x. e' \), the \(x \) is a parameter, and thus a local variable that is different from other \(x \)'s. Implements static scoping.
 - So the substitution has no effect in this case, since the \(x \) being substituted for is different from the parameter \(x \) that is in \(e' \)
 - \((\lambda y. e')[x:=e] = ?\)
 - The parameter \(y \) does not share the same name as \(x \), the variable being substituted for
 - Is \(\lambda y.(e'[x:=e]) \) correct? No…
Variable Capture

How about the following?

- \((\lambda x.\lambda y.x\ y)\ y \rightarrow ?\)
- When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\), as this violates static scoping
- I.e., \((\lambda x.\lambda y.x\ y)\ y \neq \lambda y.y\ y\)

Solution

- \((\lambda x.\lambda y.x\ y)\) is “the same” as \((\lambda x.\lambda z.x\ z)\)
 - Due to alpha conversion
- So alpha-convert \((\lambda x.\lambda y.x\ y)\ y\) to \((\lambda x.\lambda z.x\ z)\ y\) first
 - Now \((\lambda x.\lambda z.x\ z)\ y \rightarrow \lambda z.y\ z\)
Completing the Definition of Substitution

- Recall: we need to define \((\lambda y. e')[x:=e]\)
 - We want to avoid capturing (free) occurrences of \(y\) in \(e\)
 - Solution: alpha-conversion!
 - Change \(y\) to a variable \(w\) that does not appear in \(e'\) or \(e\)
 (Such a \(w\) is called fresh)
 - Replace all occurrences of \(y\) in \(e'\) by \(w\).
 - Then replace all occurrences of \(x\) in \(e'\) by \(e\!\)
- Formally:
 \[(\lambda y. e')[x:=e] = \lambda w.((e' [y:=w]) [x:=e])\] (\(w\) is fresh)
Beta-Reduction, Again

- Whenever we do a step of beta reduction
 - \((\lambda x.e_1) e_2 \rightarrow e_1[x:=e_2]\)
 - We must alpha-convert variables as necessary
 - Sometimes performed implicitly (w/o showing conversion)

- Examples
 - \((\lambda x.\lambda y.x y)\ y = (\lambda x.\lambda z.x\ z)\ y \rightarrow \lambda z.y\ z\quad //\ y \rightarrow z\)
 - \((\lambda x.x\ (\lambda x.x))\ z = (\lambda y.y\ (\lambda x.x))\ z \rightarrow z\ (\lambda x.x)\quad //\ x \rightarrow y\)
Quiz #6

Beta-reducing the following term produces what result?

\[(\lambda x.x \ \lambda y.y \ x) \ y\]

A. \(y (\lambda z.z \ y)\)
B. \(z (\lambda y.y \ z)\)
C. \(y (\lambda y.y \ y)\)
D. \(y \ y\)
Quiz #6

Beta-reducing the following term produces what result?

\((\lambda x. x \lambda y. y x) \ y\)

A. \(y \ (\lambda z. z \ y)\)
B. \(z \ (\lambda y. y \ z)\)
C. \(y \ (\lambda y. y \ y)\)
D. \(y \ y\)
Quiz #7

Beta reducing the following term produces what result?

\[\lambda x. (\lambda y. y y) \; w \; z \]

a) \(\lambda x. w \; w \; z \)
b) \(\lambda x. w \; z \)
c) \(w \; z \)
d) Does not reduce
Quiz #7

Beta reducing the following term produces what result?

\[\lambda x. (\lambda y. y y) \, w \, z \]

a) \[\lambda x. w \, w \, z \]

b) \[\lambda x. w \, z \]

c) \[w \, z \]

d) Does not reduce
Lambda Calc, Impl in OCaml

e ::= x
 | λx.e
 | e e

type id = string

type exp = Var of id
 | Lam of id * exp
 | App of exp * exp

y

λx.x

λx.λy.x y

(λx.λy.x y) λx.x x
Quiz #8

What is this term’s AST?

\[
\lambda x.x \ x \ x
\]

A. App (Lam ("x", Var "x"), Var "x")
B. Lam (Var "x", Var "x", Var "x")
C. Lam ("x", App (Var "x", Var "x"))
D. App (Lam ("x", App ("x", "x")))
Quiz #8
What is this term’s AST?

\[\lambda x. x \ x \ x \]

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”, Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))
OCaml Implementation: Substitution

(* substitute e for y in m-- m[y:=e] *)

let rec subst m y e =
 match m with
 Var x ->
 if y = x then e (* substitute *)
 else m (* don’t subst *)
 | App (e1,e2) ->
 App (subst e1 y e, subst e2 y e)
 | Lam (x,e0) -> ...
let rec subst m y e = match m with ...
 | Lam (x,e0) ->
 if y = x then m
 else if not (List.mem x (fvs e)) then
 Lam (x, subst e0 y e)
 else
 let z = newvar() in (* fresh *)
 let e0' = subst e0 x (Var z) in
 Lam (z, subst e0' y e)
let rec reduce e =
 match e with
 | App (Lam (x,e), e2) -> subst e x e2
 | App (e1,e2) ->
 let e1' = reduce e1 in
 if e1' != e1 then App(e1',e2)
 else App (e1,reduce e2)
 | Lam (x,e) -> Lam (x, reduce e)
 | _ -> e

Straight β rule
Reduce lhs of app
Reduce rhs of app
Reduce function body
nothing to do
Another Way to Avoid Capture

- Another way to avoid accidental variable capture is to use the “Barendregt Convention”: gives everything ‘fresh’ names.
 - If every name is unique, no chance of variable capture
 - Simple, but not great for performance as you have to do it after every beta-reduction!
Quick Recap on LC

- Despite its simplicity (3 AST nodes and a handful of small-step rules), LC is Turing Complete.
- Any function that can be evaluated on a Turing machine can be encoded into LC (and vice-versa).
 - But we’ll have to come up with the encodings!
- To prove that it is Turing Complete we have to map every possible Turing Machine to LC.
 - We won’t be doing that.
The Power of Lambdas

- To give a sense of how one can encode various constructs into LC we’ll be looking at some concrete examples:
 - Let bindings
 - Booleans
 - Pairs
 - Natural numbers & arithmetic
 - Looping
Let bindings

- Local variable declarations are like defining a function and applying it immediately (once):
 - \(\text{let } x = e_1 \text{ in } e_2 = (\lambda x.e_2) \ e_1 \)

- Example
 - \(\text{let } x = (\lambda y.y) \text{ in } x \ x = (\lambda x.x \ x) \ (\lambda y.y) \)

where

\[
(\lambda x.x \ x) \ (\lambda y.y) \rightarrow (\lambda x.x \ x) \ (\lambda y.y) \rightarrow (\lambda y.y) \ (\lambda y.y) \rightarrow (\lambda y.y)
\]
Booleans

- Church’s encoding of mathematical logic
 - true = \(\lambda x.\lambda y.x \)
 - false = \(\lambda x.\lambda y.y \)
 - if \(a \) then \(b \) else \(c \)
 - Defined to be the expression: \(a \ b \ c \)

- Examples
 - if true then \(b \) else \(c \) = (\(\lambda x.\lambda y.x \)) \(b \ c \rightarrow (\lambda y.b) \ c \rightarrow b \)
 - if false then \(b \) else \(c \) = (\(\lambda x.\lambda y.y \)) \(b \ c \rightarrow (\lambda y.y) \ c \rightarrow c \)
Booleans (cont.)

- Other Boolean operations
 - `not = λx.x false true`
 - `not x = x false true = if x then false else true`
 - `not true → (λx.x false true) true → (true false true) → false`
 - `and = λx.λy.x y false`
 - `and x y = if x then y else false`
 - `or = λx.λy.x true y`
 - `or x y = if x then true else y`

- Given these operations
 - Can build up a logical inference system
Quiz #9

What is the lambda calculus encoding of \(\text{xor} \ x \ y \)?

- \(\text{xor} \ \text{true} \ \text{true} = \text{xor} \ \text{false} \ \text{false} = \text{false} \)
- \(\text{xor} \ \text{true} \ \text{false} = \text{xor} \ \text{false} \ \text{true} = \text{true} \)

- \(x \ x \ y \)
- \(x \ (y \ \text{true} \ \text{false}) \ y \)
- \(x \ (y \ \text{false} \ \text{true}) \ y \)
- \(y \ x \ y \)

- \(\text{true} = \lambda x.\lambda y.x \)
- \(\text{false} = \lambda x.\lambda y.y \)
- \(\text{if a then b else c} = a \ b \ c \)
- \(\text{not} = \lambda x.x \ \text{false} \ \text{true} \)
Quiz #9

What is the lambda calculus encoding of \texttt{xor} \ x \ y?

- \texttt{xor} \ true \ true = \texttt{xor} \ false \ false = \texttt{false}
- \texttt{xor} \ true \ false = \texttt{xor} \ false \ true = \texttt{true}

\begin{itemize}
\item \texttt{x} \ x \ y
\item \texttt{x} \ (\texttt{y} \ true \ false) \ y
\item \texttt{x} \ (\texttt{y} \ false \ true) \ y
\item \texttt{y} \ x \ y
\end{itemize}

\texttt{true} = \lambda x.\lambda y.x
\texttt{false} = \lambda x.\lambda y.y
\texttt{if} \ a \texttt{then} \ b \texttt{else} \ c = a \ b \ c
\texttt{not} = \lambda x.\lambda x \ false \ true
Pairs

- **Encoding of a pair** \(a, b\)
 - \((a,b) = \lambda x. \text{if } x \text{ then } a \text{ else } b\)
 - \(\text{fst} = \lambda f. f \text{ true}\)
 - \(\text{snd} = \lambda f. f \text{ false}\)

- **Examples**
 - \(\text{fst } (a,b) = (\lambda f. f \text{ true}) (\lambda x. \text{if } x \text{ then } a \text{ else } b) \rightarrow (\lambda x. \text{if } x \text{ then } a \text{ else } b) \text{ true } \rightarrow \text{if true then a else b } \rightarrow a\)
 - \(\text{snd } (a,b) = (\lambda f. f \text{ false}) (\lambda x. \text{if } x \text{ then } a \text{ else } b) \rightarrow (\lambda x. \text{if } x \text{ then } a \text{ else } b) \text{ false } \rightarrow \text{if false then a else b } \rightarrow b\)
Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - $0 = \lambda f.\lambda y.y$
 - $1 = \lambda f.\lambda y.f \, y$
 - $2 = \lambda f.\lambda y.f \, (f \, y)$
 - $3 = \lambda f.\lambda y.f \, (f \, (f \, y))$
 - i.e., $n = \lambda f.\lambda y.\text{<apply f n times to y>}$
 - Formally: $n+1 = \lambda f.\lambda y.f \, (n \, f \, y)$

(Alonzo Church, of course)
Quiz #10

\[n = \lambda f.\lambda y.\langle\text{apply } f \text{ n times to } y\rangle \]

What OCaml type could you give to a Church-encoded numeral?

- (‘a -> ‘b) -> ‘a -> ‘b
- (‘a -> ‘a) -> ‘a -> ‘a
- (‘a -> ‘a) -> ‘b -> int
- (int -> int) -> int -> int
Quiz #10

What OCaml type could you give to a Church-encoded numeral?

- (‘a -> ‘b) -> ‘a -> ‘b
- (‘a -> ‘a) -> ‘a -> ‘a
- (‘a -> ‘a) -> ‘b -> int
- (int -> int) -> int -> int

\[n = \lambda f.\lambda y.\ <\text{apply } f \ n \ \text{times to } y> \]
Operations On Church Numerals

- **Successor**
 - \(\text{succ} = \lambda z. \lambda f. \lambda y. f (z f y) \)
 - \(0 = \lambda f. \lambda y. y \)
 - \(1 = \lambda f. \lambda y. f y \)

- **Example**
 - \(\text{succ} \ 0 = (\lambda z. \lambda f. \lambda y. f (z f y)) \ (\lambda f. \lambda y. y) \ → \)
 - \(\lambda f. \lambda y. f ((\lambda f. \lambda y. y) \ f \ y) \ → \)
 - \(\lambda f. \lambda y. f ((\lambda y. y) \ y) \ → \)
 - \(\lambda f. \lambda y. f y \)
 - \(= 1 \)
 - Since \((\lambda x. y) \ z \ → \ y \)
Operations On Church Numerals (cont.)

- **IsZero?**
 - `iszero = λz.z (λy.false) true`
 - This is equivalent to `λz.((z (λy.false)) true)`

- **Example**
 - `iszero 0 =`
 - `(λz.z (λy.false) true) (λf.λy.y) →`
 - `(λf.λy.y) (λy.false) true →`
 - `(λy.y) true →`
 - `true`
 - **Since** `(λx.y) z → y`
 - `0 = λf.λy.y`
Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
 - Can also encode various arithmetic operations

Addition
- \(M + N = \lambda f.\lambda y.M f (N f y) \)
 - Equivalently: \(+ = \lambda M.\lambda N.\lambda f.\lambda y.M f (N f y) \)
 - In prefix notation (+ M N)

Multiplication
- \(M * N = \lambda f.M (N f) \)
 - Equivalently: \(* = \lambda M.\lambda N.\lambda f.\lambda y.M (N f) y \)
 - In prefix notation (* M N)
Arithmetic (cont.)

- Prove $1+1 = 2$
 - $1+1 = \lambda x.\lambda y.(1 \ x) (1 \ x \ y) =$
 - $\lambda x.\lambda y.((\lambda f.\lambda y.f \ y) \ x) (1 \ x \ y) \rightarrow$
 - $\lambda x.\lambda y.(\lambda y.x \ y) (1 \ x \ y) \rightarrow$
 - $\lambda x.\lambda y.x (1 \ x \ y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda f.\lambda y.f \ y) \ x \ y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda y.x \ y) \ y) \rightarrow$
 - $\lambda x.\lambda y.x (x \ y) = 2$

- With these definitions
 - Can build a theory of arithmetic

- $1 = \lambda f.\lambda y.f \ y$
- $2 = \lambda f.\lambda y.f \ (f \ y)$
Arithmetic Using Church Numerals

- What about subtraction?
 - Easy once you have ‘predecessor’, but...
 - Predecessor is very difficult!

- Story time:
 - One of Church’s students, Kleene (of Kleene-star fame) was struggling to think of how to encode ‘predecessor’, until it came to him during a trip to the dentists office.
 - Take from this what you will

- Wikipedia has a great derivation of ‘predecessor’, not enough time today.
Looping + Recursion

- So far we have avoided self-reference, so how does recursion work?
- We can construct a lambda term that ‘replicates’ itself:
 - Define $D = \lambda x. x x$, then
 - $D D = (\lambda x. x x) (\lambda x. x x) \rightarrow (\lambda x. x x) (\lambda x. x x) = D D$
 - $D D$ is an infinite loop
- We want to generalize this, so that we can make use of looping
The Fixpoint Combinator

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

- Then
 \[Y F = \]
 \[
 (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \rightarrow \\
 (\lambda x. F (x x)) (\lambda x. F (x x)) \rightarrow \\
 F ((\lambda x. F (x x)) (\lambda x. F (x x))) \\
 = F (Y F)
 \]

- \(Y F \) is a \textit{fixed point} (aka fixpoint) of \(F \)

- Thus \(Y F = F (Y F) = F (F (Y F)) = \ldots \)
 - We can use \(Y \) to achieve recursion for \(F \)
Example

\texttt{fact} = \lambda f.\lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f \ (n-1))

- The second argument to \texttt{fact} is the integer
- The first argument is the function to call in the body
 - We’ll use \texttt{Y} to make this recursively call \texttt{fact}

\texttt{(Y fact) 1 = (fact (Y fact)) 1}

\[\rightarrow \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \ast ((Y \text{ fact}) 0) \]

\[\rightarrow 1 \ast ((Y \text{ fact}) 0) \]

\[= 1 \ast (\text{fact } (Y \text{ fact}) 0) \]

\[\rightarrow 1 \ast (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \ast ((Y \text{ fact}) (-1))) \]

\[\rightarrow 1 \ast 1 \rightarrow 1 \]
Factorial 4=?

(Y G) 4
G (Y G) 4
(λr.λn.(if n = 0 then 1 else n × (r (n-1)))) (Y G) 4
(λn.(if n = 0 then 1 else n × ((Y G) (n-1)))) 4
if 4 = 0 then 1 else 4 × ((Y G) (4-1))
4 × (G (Y G) (4-1))
4 × ((λn.(1, if n = 0; else n × ((Y G) (n-1)))) (4-1))
4 × (1, if 3 = 0; else 3 × ((Y G) (3-1)))
4 × (3 × (G (Y G) (3-1)))
4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n-1)))) (3-1)))
4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2-1))))
4 × (3 × (2 × (G (Y G) (2-1))))
4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n-1)))) (2-1))))
4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1-1))))))
4 × (3 × (2 × (1 × (G (Y G) (1-1)))))
4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n-1)))) (1-1)))))
4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0-1)))))))
4 × (3 × (2 × (1 × (1))))
24
Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in “real” language
 - Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 → thousands of function calls)
 - Pretty large (10000 + 1 → hundreds of lines of code)
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives
The Need For Types

- Consider the untyped lambda calculus
 - \(\text{false} = \lambda x.\lambda y.y \)
 - \(0 = \lambda x.\lambda y.y \)

- Since everything is encoded as a function...
 - We can easily misuse terms...
 - \(\text{false} \ 0 \rightarrow \lambda y.y \)
 - \(\text{if} \ 0 \ \text{then} \ ... \)
 - ...because everything evaluates to some function

- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words
Simply-Typed Lambda Calculus (STLC)

- e ::= n | x | λx:t.e | e e
 - Added integers n as primitives
 - Need at least two distinct types (integer & function)...
 - ...to have type errors
 - Functions now include the type t of their argument

- t ::= int | t → t
 - int is the type of integers
 - t1 → t2 is the type of a function
 - That takes arguments of type t1 and returns result of type t2
Types are limiting

- STLC will reject some terms as ill-typed, even if they will not produce a run-time error
 - Cannot type check Y in STLC
 - Or in OCaml, for that matter, at least not as written earlier.
- Surprising theorem: All (well typed) simply-typed lambda calculus terms are strongly normalizing
 - A normal form is one that cannot be reduced further
 - A value is a kind of normal form
 - Strong normalization means STLC terms always terminate
 - Proof is not by straightforward induction: Applications “increase” term size
Summary

- Lambda calculus is a core model of computation
 - We can encode familiar language constructs using only functions
 - These encodings are enlightening – make you a better (functional) programmer

- Useful for understanding how languages work
 - Ideas of types, evaluation order, termination, proof systems, etc. can be developed in lambda calculus,
 - then scaled to full languages