
172 Chapter 7 Quicksort

2 8 7 1 3 5 6 4
p,j ri

(a)

2 8 7 1 3 5 6 4
p,i rj

(b)

2 8 7 1 3 5 6 4
p,i rj

(c)

2 8 7 1 3 5 6 4
p,i rj

(d)

2 871 3 5 6 4
p rj

(e)
i

2 8 71 3 5 6 4
p rj

(f)
i

2 8 71 3 5 6 4
p rj

(g)
i

2 8 71 3 5 6 4
p r

(h)
i

2 871 3 5 64
p r

(i)
i

Figure 7.1 The operation of PARTITION on a sample array. Array entry AŒr ! becomes the pivot
element x. Lightly shaded array elements are all in the first partition with values no greater than x.
Heavily shaded elements are in the second partition with values greater than x. The unshaded el-
ements have not yet been put in one of the first two partitions, and the final white element is the
pivot x. (a) The initial array and variable settings. None of the elements have been placed in either
of the first two partitions. (b) The value 2 is “swapped with itself” and put in the partition of smaller
values. (c)–(d) The values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8
are swapped, and the smaller partition grows. (f) The values 3 and 7 are swapped, and the smaller
partition grows. (g)–(h) The larger partition grows to include 5 and 6, and the loop terminates. (i) In
lines 7–8, the pivot element is swapped so that it lies between the two partitions.

The indices between j and r ! 1 are not covered by any of the three cases, and the
values in these entries have no particular relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

7.1 Description of quicksort 173

≤ x > x unrestricted

x
p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray AŒp : : r !. The
values in AŒp : : i ! are all less than or equal to x, the values in AŒi C 1 : : j ! 1! are all greater than x,
and AŒr ! D x. The subarray AŒj : : r ! 1! can take on any values.

Initialization: Prior to the first iteration of the loop, i D p ! 1 and j D p. Be-
cause no values lie between p and i and no values lie between i C 1 and j ! 1,
the first two conditions of the loop invariant are trivially satisfied. The assign-
ment in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, we consider two cases, depending on the
outcome of the test in line 4. Figure 7.3(a) shows what happens when AŒj ! > x;
the only action in the loop is to increment j . After j is incremented, condition 2
holds for AŒj ! 1! and all other entries remain unchanged. Figure 7.3(b) shows
what happens when AŒj ! " x; the loop increments i , swaps AŒi ! and AŒj !,
and then increments j . Because of the swap, we now have that AŒi ! " x, and
condition 1 is satisfied. Similarly, we also have that AŒj ! 1! > x, since the
item that was swapped into AŒj ! 1! is, by the loop invariant, greater than x.

Termination: At termination, j D r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x, those greater than x,
and a singleton set containing x.

The final two lines of PARTITION finish up by swapping the pivot element with
the leftmost element greater than x, thereby moving the pivot into its correct place
in the partitioned array, and then returning the pivot’s new index. The output of
PARTITION now satisfies the specifications given for the divide step. In fact, it
satisfies a slightly stronger condition: after line 2 of QUICKSORT, AŒq! is strictly
less than every element of AŒq C 1 : : r !.

The running time of PARTITION on the subarray AŒp : : r ! is ‚.n/, where
n D r ! p C 1 (see Exercise 7.1-3).

Exercises
7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A D h13; 19; 9; 5; 12; 8; 7; 4; 21; 2; 6; 11i.

Quicksort

procedure quicksort(A,p,r)

if p<r then

q partition(A,p,r)

quicksort(A,p,q-1)

quicksort(A,q+1,r)

end if

end procedure

function partition(A,p,r)

X A[r]

i p-1

for j = p to r-1 do

if A[j] X then

i i+1

A[i] $ A[j]

end if

end for

A[i+1] $ A[r]

return(i+1)

end function

8

