Mechanism

• Process states
 • Ready Queue

• Select a process from the ready queue

• Change its state to running

• Decide on a time Quantum and set the timer with that value

• Restore the saved state of the process

• Change the Instructor Counter value from the saved value
Basic Concepts

• Maximum CPU utilization obtained with multiprogramming

• CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait

 • CPU burst followed by I/O burst

 • CPU burst distribution is of main concern
Histogram of CPU-burst Times
CPU Scheduler

- **Short-term scheduler also called Dispatcher**
 - Selects from among the processes in ready queue, and allocates the CPU to one of them
 - Queue may be ordered in various ways

- **CPU scheduling decisions may take place when a process:**
 1. Switches from running to waiting state
 2. Switches from running to ready state
 3. Switches from waiting to ready
 4. Terminates

- Scheduling under 1 and 4 is **nonpreemptive**
- All other scheduling is **preemptive**
 - Consider access to shared data
 - Consider preemption while in kernel mode
 - Consider interrupts occurring during crucial OS activities
Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program

- **Dispatch latency** – time it takes for the dispatcher to stop one process and start another running
Scheduling Criteria

• **CPU utilization** – keep the CPU as busy as possible

• **Throughput** – # of processes that complete their execution per time unit

• **Turnaround time** – amount of time to execute a particular process

• **Waiting time** – amount of time a process has been waiting in the ready queue

• **Response time** – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)
Scheduling Algorithm Optimization Criteria

• Max CPU utilization
• Max throughput
• Min turnaround time
• Min waiting time
• Min response time
First- Come, First-Served (FCFS) Scheduling

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>24</td>
</tr>
<tr>
<td>P_2</td>
<td>3</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
</tr>
</tbody>
</table>

• Suppose that the processes arrive in the order: P_1, P_2, P_3

The Gantt Chart for the schedule is:

• Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
• Average waiting time: $(0 + 24 + 27)/3 = 17$
FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

\[P_2, P_3, P_1 \]

- The Gantt chart for the schedule is:

\[
\begin{array}{c|c|c|c}
0 & 3 & 6 & 30 \\
P_2 & P_3 & \text{P}_1 \\
\end{array}
\]

- Waiting time for \(P_1 = 6; P_2 = 0, P_3 = 3 \)
- Average waiting time: \((6 + 0 + 3)/3 = 3 \)
- Much better than previous case
- **Convoy effect** - short process behind long process
 - Consider one CPU-bound and many I/O-bound processes
Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU burst
 • Use these lengths to schedule the process with the shortest time
• SJF is optimal – gives minimum average waiting time for a given set of processes
 • The difficulty is knowing the length of the next CPU request
 • Could ask the user
Example of SJF

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>6</td>
</tr>
<tr>
<td>P_2</td>
<td>8</td>
</tr>
<tr>
<td>P_3</td>
<td>7</td>
</tr>
<tr>
<td>P_4</td>
<td>3</td>
</tr>
</tbody>
</table>

• SJF scheduling chart

![SJF Scheduling Chart]

• Average waiting time = $(3 + 16 + 9 + 0) / 4 = 7$
Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to the previous one
 • Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU bursts, using exponential averaging
 1. $t_n =$ actual length of n^{th} CPU burst
 2. $\tau_{n+1} =$ predicted value for the next CPU burst
 3. $\alpha, 0 \leq \alpha \leq 1$
 4. Define: $\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n$.

• Commonly, α set to $\frac{1}{2}$
• Preemptive version called shortest-remaining-time-first
Prediction of the Length of the Next CPU Burst

CPU burst (t_i) 6 4 6 4 13 13 13 …

guess (τ_i) 10 8 6 6 5 9 11 12 …
Examples of Exponential Averaging

• $\alpha = 0$
 • $\tau_{n+1} = \tau_n$
 • Recent history does not count

• $\alpha = 1$
 • $\tau_{n+1} = \alpha t_n$
 • Only the actual last CPU burst counts

• If we expand the formula, we get:
 $$\tau_{n+1} = \alpha t_n + (1 - \alpha)\alpha t_{n-1} + \ldots$$
 $$+ (1 - \alpha)\ldots^j \alpha t_{n-j} + \ldots$$
 $$+ (1 - \alpha)^{n+1}\tau_0$$

• Since both α and $(1 - \alpha)$ are less than or equal to 1, each successive term has less weight than its predecessor
Example of Shortest-remaining-time-first

• Now we add the concepts of varying arrival times and preemption to the analysis

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>P_2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>P_3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>P_4</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

• Preemptive SJF Gantt Chart

• Average waiting time = $[(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5$ msec
Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority)
 • Preemptive
 • Nonpreemptive

• SJF is priority scheduling where priority is the inverse of predicted next CPU burst time

• Problem ≡ Starvation – low priority processes may never execute

• Solution ≡ Aging – as time progresses increase the priority of the process
Example of Priority Scheduling

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>P_2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>P_4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>P_5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec
Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.

• If there are n processes in the ready queue and the time quantum is q, then each process gets $1/n$ of the CPU time in chunks of at most q time units at once. No process waits more than $(n-1)q$ time units.

• Timer interrupts every quantum to schedule next process

• Performance
 • q large \Rightarrow FIFO
 • q small \Rightarrow q must be large with respect to context switch, otherwise overhead is too high
Example of RR with Time Quantum = 4

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>24</td>
</tr>
<tr>
<td>P_2</td>
<td>3</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
</tr>
</tbody>
</table>

- The Gantt chart is:

```
<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P1</th>
<th>P1</th>
<th>P1</th>
<th>P1</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
</tr>
</tbody>
</table>
```

- Typically, higher average turnaround than SJF, but better *response*
- q should be large compared to context switch time
- q usually 10ms to 100ms, context switch < 10 usec
Time Quantum and Context Switch Time

![Diagram illustrating process time, quantum, and context switches](image)

- **Process time = 10**
- **Quantum:**
 - 12 switches: 0
 - 6 switches: 1
 - 1 switches: 9

Copyright 2018 Silberschatz, Gavin & Gagne
Turnaround Time Varies With The Time Quantum

80% of CPU bursts should be shorter than q
Multilevel Queue

• Ready queue is partitioned into separate queues, eg:
 • foreground (interactive)
 • background (batch)

• Process permanently in a given queue

• Each queue has its own scheduling algorithm:
 • foreground – RR
 • background – FCFS

• Scheduling must be done between the queues:
 • Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 • Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 • 20% to background in FCFS
Multilevel Queue Scheduling

- **highest priority**
 - system processes
 - interactive processes
 - interactive editing processes
 - batch processes
 - student processes

- **lowest priority**
Multilevel Feedback Queue

• A process can move between the various queues; aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by the following parameters:
 • number of queues
 • scheduling algorithms for each queue
 • method used to determine when to upgrade a process
 • method used to determine when to demote a process
 • method used to determine which queue a process will enter when that process needs service
Example of Multilevel Feedback Queue

• Three queues:
 • Q_0 – RR with time quantum 8 milliseconds
 • Q_1 – RR time quantum 16 milliseconds
 • Q_2 – FCFS

• Scheduling
 • A new job enters queue Q_0 which is served FCFS
 • When it gains CPU, job receives 8 milliseconds
 • If it does not finish in 8 milliseconds, job is moved to queue Q_1
 • At Q_1 job is again served FCFS and receives 16 additional milliseconds
 • If it still does not complete, it is preempted and moved to queue Q_2
Multilevel Feedback Queues

Quantum = 8 ms

Quantum = 16 ms

Quantum = 32 ms

Quantum = 64 ms

Quantum = 128 ms

Quantum = 256 ms
Multiple Servers

• Two servers-Same speed
Two servers

• Server A is 10 times faster than server B

Threshold Scheduling
Thread Scheduling

• Distinction between user-level and kernel-level threads
• When threads supported, threads scheduled, not processes
• Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP
 • Known as process-contention scope (PCS) since scheduling competition is within the process
 • Typically done via priority set by programmer
• Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition among all threads in system
Pthread Scheduling

• API allows specifying either PCS or SCS during thread creation
 • PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling
 • PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

• Can be limited by OS – Linux and Mac OS X only allow
 PTHREAD_SCOPE_SYSTEM
Pthread Scheduling API

```c
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[]) {
    int i, scope;
    pthread_t tid[NUM_THREADS];
    pthread_attr_t attr;
    /* get the default attributes */
    pthread_attr_init(&attr);
    /* first inquire on the current scope */
    if (pthread_attr_getscope(&attr, &scope) != 0)
        fprintf(stderr, "Unable to get scheduling scope\n");
    else {
        if (scope == PTHREAD_SCOPE_PROCESS)
            printf("PTHREAD_SCOPE_PROCESS\n");
        else if (scope == PTHREAD_SCOPE_SYSTEM)
            printf("PTHREAD_SCOPE_SYSTEM\n");
        else
            fprintf(stderr, "Illegal scope value.\n");
    }
}
Pthread Scheduling API

/* set the scheduling algorithm to PCS or SCS */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)
    pthread_create(&tid[i], &attr, runner, NULL);

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)
    pthread_join(tid[i], NULL);
}

/* Each thread will begin control in this function */
void *runner(void *param)
{
    /* do some work ... */
    pthread_exit(0);
}
Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- **Homogeneous processors** within a multiprocessor
- **Asymmetric multiprocessing** – only one processor accesses the system data structures, alleviating the need for data sharing
- **Symmetric multiprocessing (SMP)** – each processor is self-scheduling, all processes in common ready queue, or each has its own private queue of ready processes
  - Currently, most common
- **Processor affinity** – process has affinity for processor on which it is currently running
  - soft affinity
  - hard affinity
  - Variations including **processor sets**
Organization of Queues

common ready queue

(a)

per-core run queues

(b)
Multiple-Processor Scheduling – Load Balancing

• If SMP, need to keep all CPUs loaded for efficiency

• **Load balancing** attempts to keep workload evenly distributed

• **Push migration** – periodic task checks load on each processor, and if found pushes task from overloaded CPU to other CPUs

• **Pull migration** – idle processors pulls waiting task from busy processor
Multicore Processors

• Recent trend to place multiple processor cores on same physical chip
• Faster and consumes less power
• Multiple threads per core also growing
  • Takes advantage of memory stall to make progress on another thread while memory retrieve happens
Multithreaded Multicore System

C compute cycle
M memory stall cycle

thread

C M C M C M C M

time

thread\textsubscript{1}

C M C M C M C

time

C M C M C M C

time

thread\textsubscript{0}
Chip Multithreading

[Diagram showing a processor with multiple cores and hardware threads.]
NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity.
Real-Time CPU Scheduling

• Can present obvious challenges

• **Soft real-time systems** – no guarantee as to when critical real-time process will be scheduled

• **Hard real-time systems** – task must be serviced by its deadline

• Two types of latencies affect performance
  1. Interrupt latency – time from arrival of interrupt to start of routine that services interrupt
  2. Dispatch latency – time for schedule to take current process off CPU and switch to another
• Conflict phase of dispatch latency:
  1. Preemption of any process running in kernel mode
  2. Release by low-priority process of resources needed by high-priority processes
Priority-based Scheduling

• For real-time scheduling, scheduler must support preemptive, priority-based scheduling
  • But only guarantees soft real-time

• For hard real-time must also provide ability to meet deadlines

• Processes have new characteristics: periodic ones require CPU at constant intervals
  • Has processing time $t$, deadline $d$, period $p$
  • $0 \leq t \leq d \leq p$
  • Rate of periodic task is $1/p$
Virtualization and Scheduling

• Virtualization software schedules multiple guests onto CPU(s)
• Each guest doing its own scheduling
  • Not knowing it doesn’t own the CPUs
  • Can result in poor response time
  • Can effect time-of-day clocks in guests
• Can undo good scheduling algorithm efforts of guests
Rate Montonic Scheduling

• A priority is assigned based on the inverse of its period
• Shorter periods = higher priority; P1 period 50, T1= 20
• Longer periods = lower priority; P2 period 100, T2 = 35
• $P_1$ is assigned a higher priority than $P_2$. 
Missed Deadlines with Rate Monotonic Scheduling

• P1 = 50, T1 = 25 utilization = 25/50 = 0.5
• P2 = 80, T2 = 35 utilization = 35/80 = 0.44

• Worst Case Utilization \( N(2^{(1/N)} - 1) \)
  • N = 1 Utilization 1
  • N = 2 Utilization 0.82
  • N = infinity Utilization = 0.69
Earliest Deadline First Scheduling (EDF)

• Priorities are assigned according to deadlines:
  • the earlier the deadline, the higher the priority;
  • the later the deadline, the lower the priority
Proportional Share Scheduling

• $T$ shares are allocated among all processes in the system

• An application receives $N$ shares where $N < T$

• This ensures each application will receive $N / T$ of the total processor time
POSIX Real-Time Scheduling

- The POSIX.1b standard
- API provides functions for managing real-time threads
- Defines two scheduling classes for real-time threads:
  1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a FIFO queue. There is no time-slicing for threads of equal priority
  2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for threads of equal priority
- Defines two functions for getting and setting scheduling policy:
  1. `pthread_attr_getsched_policy(pthread_attr_t *attr, int *policy)`
  2. `pthread_attr_set_sched_policy(pthread_attr_t *attr, int policy)`
POSIX Real-Time Scheduling API

```c
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

int main(int argc, char *argv[]) {
 int i, policy;
 pthread_t_tid[NUM_THREADS];
 pthread_attr_t attr;
 /* get the default attributes */
 pthread_attr_init(&attr);
 /* get the current scheduling policy */
 if (pthread_attr_getschedpolicy(&attr, &policy) != 0)
 fprintf(stderr, "Unable to get policy.\n");
 else {
 if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");
 else if (policy == SCHED_RR) printf("SCHED_RR\n");
 else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");
 }
```

October 21

Copyright 2018 Silberschatz, Gavin & Gagne
/* set the scheduling policy - FIFO, RR, or OTHER */
if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)
    fprintf(stderr, "Unable to set policy.\n");

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)
    pthread_create(&tid[i], &attr, runner, NULL);

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)
    pthread_join(tid[i], NULL);
}

/* Each thread will begin control in this function */
void *runner(void *param)
{
    /* do some work ... */
    pthread_exit(0);
}

/* POSIX Real-Time Scheduling API (Cont.) */
Operating System Examples

- Linux scheduling
- Windows scheduling
- Solaris scheduling
Linux Scheduling Through Version 2.5

• Prior to kernel version 2.5, ran variation of standard UNIX scheduling algorithm

• Version 2.5 moved to constant order $O(1)$ scheduling time
  • Preemptive, priority based
  • Two priority ranges: time-sharing and real-time
  • **Real-time** range from 0 to 99 and **nice** value from 100 to 140
  • Map into global priority with numerically lower values indicating higher priority
  • Higher priority gets larger $q$
  • Task run-able as long as time left in time slice (**active**)
  • If no time left (**expired**), not run-able until all other tasks use their slices
  • All run-able tasks tracked in per-CPU **runqueue** data structure
    • Two priority arrays (active, expired)
    • Tasks indexed by priority
    • When no more active, arrays are exchanged
  
• Worked well, but poor response times for interactive processes
Linux Scheduling in Version 2.6.23 +

- *Completely Fair Scheduler* (CFS)

- **Scheduling classes**
  - Each has specific priority
  - Scheduler picks highest priority task in highest scheduling class
  - Rather than quantum based on fixed time allotments, based on proportion of CPU time
  - 2 scheduling classes included, others can be added
    1. default
    2. real-time

- Quantum calculated based on *nice value* from -20 to +19
  - Lower value is higher priority
  - Calculates *target latency* – interval of time during which task should run at least once
  - Target latency can increase if say number of active tasks increases

- CFS scheduler maintains per task *virtual run time* in variable `vruntime`
  - Associated with decay factor based on priority of task – lower priority is higher decay rate
  - Normal default priority yields virtual run time = actual run time

- To decide next task to run, scheduler picks task with lowest virtual run time
The Linux CFS scheduler provides an efficient algorithm for selecting which task to run next. Each runnable task is placed in a red-black tree—a balanced binary search tree whose key is based on the value of vruntime. This tree is shown below:

```
 Task with the smallest value of vruntime

 T0
 T1 T2
 T3 T4 T5 T6
 T7 T8 T9

 smaller Value of vruntime larger
```

When a task becomes runnable, it is added to the tree. If a task on the tree is not runnable (for example, if it is blocked while waiting for I/O), it is removed. Generally speaking, tasks that have been given less processing time (smaller values of vruntime) are toward the left side of the tree, and tasks that have been given more processing time are on the right side. According to the properties of a binary search tree, the leftmost node has the smallest key value, which for the sake of the CFS scheduler means that it is the task with the highest priority. Because the red-black tree is balanced, navigating it to discover the leftmost node will require \( O(\log N) \) operations (where \( N \) is the number of nodes in the tree). However, for efficiency reasons, the Linux scheduler caches this value in the variable \( \text{rb\_leftmost} \), and thus determining which task to run next requires only retrieving the cached value.
Linux Scheduling (Cont.)

- Real-time scheduling according to POSIX.1b
  - Real-time tasks have static priorities
- Real-time plus normal map into global priority scheme
- Nice value of -20 maps to global priority 100
- Nice value of +19 maps to priority 139
Windows Scheduling

• Windows uses priority-based preemptive scheduling
• Highest-priority thread runs next
• Dispatcher is scheduler
• Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread
• Real-time threads can preempt non-real-time
• 32-level priority scheme
• Variable class is 1-15, real-time class is 16-31
• Priority 0 is memory-management thread
• Queue for each priority
• If no run-able thread, runs idle thread
Windows Priority Classes

• Win32 API identifies several priority classes to which a process can belong
  • REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,
    ABOVE_NORMAL_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS,
    BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS
  • All are variable except REALTIME

• A thread within a given priority class has a relative priority
  • TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, LOWEST, IDLE

• Priority class and relative priority combine to give numeric priority

• Base priority is NORMAL within the class

• If quantum expires, priority lowered, but never below base
Windows Priority Classes (Cont.)

• If wait occurs, priority boosted depending on what was waited for
• Foreground window given 3x priority boost
• Windows 7 added user-mode scheduling (UMS)
  • Applications create and manage threads independent of kernel
  • For large number of threads, much more efficient
  • UMS schedulers come from programming language libraries like C++ Concurrent Runtime (ConcRT) framework
## Windows Priorities

<table>
<thead>
<tr>
<th></th>
<th>real-time</th>
<th>high</th>
<th>above normal</th>
<th>normal</th>
<th>below normal</th>
<th>idle priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>time-critical</td>
<td>31</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>highest</td>
<td>26</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>above normal</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>normal</td>
<td>24</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>below normal</td>
<td>23</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>lowest</td>
<td>22</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>idle</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Solaris

• Priority-based scheduling
• Six classes available
  • Time sharing (default) (TS)
  • Interactive (IA)
  • Real time (RT)
  • System (SYS)
  • Fair Share (FSS)
  • Fixed priority (FP)
• Given thread can be in one class at a time
• Each class has its own scheduling algorithm
• Time sharing is multi-level feedback queue
  • Loadable table configurable by sysadmin
<table>
<thead>
<tr>
<th>priority</th>
<th>time quantum</th>
<th>time quantum expired</th>
<th>return from sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>160</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>160</td>
<td>5</td>
<td>51</td>
</tr>
<tr>
<td>20</td>
<td>120</td>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>25</td>
<td>120</td>
<td>15</td>
<td>52</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>20</td>
<td>53</td>
</tr>
<tr>
<td>35</td>
<td>80</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>35</td>
<td>56</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>40</td>
<td>58</td>
</tr>
<tr>
<td>55</td>
<td>40</td>
<td>45</td>
<td>58</td>
</tr>
<tr>
<td>59</td>
<td>20</td>
<td>49</td>
<td>59</td>
</tr>
</tbody>
</table>
Solaris Scheduling

- Interrupt threads
- Realtime (RT) threads
- System (SYS) threads
- Fair share (FSS) threads
- Fixed priority (FX) threads
- Timeshare (TS) threads
- Interactive (IA) threads

Global priority increases from lowest (0) to highest (169). Scheduling order goes from first to last.
Solaris Scheduling (Cont.)

- Scheduler converts class-specific priorities into a per-thread global priority
  - Thread with highest priority runs next
  - Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread
  - Multiple threads at same priority selected via RR
Algorithm Evaluation

- How to select CPU-scheduling algorithm for an OS?
- Determine criteria, then evaluate algorithms
- **Deterministic modeling**
  - Type of **analytic evaluation**
  - Takes a particular predetermined workload and defines the performance of each algorithm for that workload
- Consider 5 processes arriving at time 0:

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>( P_1 )</td>
<td>10</td>
</tr>
<tr>
<td>( P_2 )</td>
<td>29</td>
</tr>
<tr>
<td>( P_3 )</td>
<td>3</td>
</tr>
<tr>
<td>( P_4 )</td>
<td>7</td>
</tr>
<tr>
<td>( P_5 )</td>
<td>12</td>
</tr>
</tbody>
</table>
Deterministic Evaluation

• For each algorithm, calculate minimum average waiting time
• Simple and fast, but requires exact numbers for input, applies only to those inputs
  • FCS is 28ms:
  ![Diagram of FCS]
  • Non-preemptive SFJ is 13ms:
  ![Diagram of Non-preemptive SFJ]
  • RR is 23ms:
  ![Diagram of RR]
Queueing Models

• Describes the arrival of processes, and CPU and I/O bursts probabilistically
  • Commonly exponential, and described by mean
  • Computes average throughput, utilization, waiting time, etc

• Computer system described as network of servers, each with queue of waiting processes
  • Knowing arrival rates and service rates
  • Computes utilization, average queue length, average wait time, etc
Little’s Formula

- $n$ = average queue length
- $W$ = average waiting time in queue
- $\lambda$ = average arrival rate into queue

Little’s law – in steady state, processes leaving queue must equal processes arriving, thus:

$$n = \lambda \times W$$

- Valid for any scheduling algorithm and arrival distribution

- For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait time per process = 2 seconds
Simulations

- Queueing models limited
- **Simulations** more accurate
  - Programmed model of computer system
  - Clock is a variable
  - Gather statistics indicating algorithm performance
  - Data to drive simulation gathered via
    - Random number generator according to probabilities
    - Distributions defined mathematically or empirically
    - Trace tapes record sequences of real events in real systems
Evaluation of CPU Schedulers by Simulation

- Simulation FCFS
  - Performance statistics for FCFS

- Simulation SJF
  - Performance statistics for SJF

- Simulation RR (q = 14)
  - Performance statistics for RR (q = 14)

Actual process execution:

- Trace tape
- CPU 10
- I/O 213
- CPU 12
- I/O 112
- CPU 2
- I/O 147
- CPU 173
- • • •
Implementation

- Even simulations have limited accuracy
- Just implement new scheduler and test in real systems
  - High cost, high risk
  - Environments vary
- Most flexible schedulers can be modified per-site or per-system
- Or APIs to modify priorities
- But again environments vary