
Machine Learning and HPC
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC416 / CMSC818X)

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Why machine learning for HPC?

• Proliferation of performance data

• On-node hardware counters

• Switch/network port counters

• Power measurements

• Traces and profiles

• Supercomputing facilites’ data

• Job queue logs, performance

• Sensors: temperature, humidity, power

2

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Types of ML-related tasks in HPC

• Auto-tuning: parameter search

• Find a well performing configuration

• Predictive models: time, energy, …

• Predict system state in the future

• Time-series analysis

• Identifying root causes/factors

3

Abhinav Bhatele

Network congestion

• Responsible for performance degradation, variability and poor scaling

• Congestion and its root causes not well understood

• Study network hardware performance counters and their correlation with execution
time

• Use supervised learning to identify hardware components that lead to congestion
and performance degradation

4

Abhinav Bhatele

 Injection Memory
FIFOs (per task)

Processor

 Injection Network
FIFOs (per node)

Router

Source node

Life of a message packet

5

Abhinav Bhatele

 Injection Memory
FIFOs (per task)

Processor

 Injection Network
FIFOs (per node)

Router

Source node

Life of a message packet

5

On the network

Abhinav Bhatele

 Injection Memory
FIFOs (per task)

Processor

 Injection Network
FIFOs (per node)

Router

Source node

Life of a message packet

5

On the network

Intermediate buffers

Router

Intermediate node

Reception Injection

Abhinav Bhatele

 Injection Memory
FIFOs (per task)

Processor

 Injection Network
FIFOs (per node)

Router

Source node

Life of a message packet

5

On the network On the network

Intermediate buffers

Router

Intermediate node

Reception Injection

Abhinav Bhatele

 Injection Memory
FIFOs (per task)

Processor

 Injection Network
FIFOs (per node)

Router

Source node

Life of a message packet

5

On the network On the network

 Reception Network
FIFOs (per node)

Processor

 Reception Memory
FIFOs (per task)

Router

Destination node

Intermediate buffers

Router

Intermediate node

Reception Injection

Abhinav Bhatele

 Injection Memory
FIFOs (per task)

Processor

 Injection Network
FIFOs (per node)

Router

Source node

Life of a message packet

5

• We analyze the relative impact of different features on
predicting execution times to identify hardware compo-
nents that contribute the most to network congestion.

• We demonstrate our technique using various communi-
cation kernels as well as two scalable, communication-
heavy applications, MILC [12] and pF3D [13].

The prediction techniques presented in this paper are widely
applicable to a variety of scenarios, such as, (1) creating offline
prediction models that can be used for low overhead tuning de-
cisions to find the best configuration parameters, (2) predicting
the execution time in new setups, e.g., on a different number
of nodes, or different input datasets, or even for an unknown
code, (3) identifying the root causes of network congestion on
different architectures, and (4) generating task mappings for
good performance.

II. POTENTIAL ROOT CAUSES OF NETWORK CONGESTION

When messages travel over the interconnection network,
they are broken into smaller units: packets, chunks and flits.
These pass through various hardware components, any or all of
which can delay the communication [10]. We briefly explain
the hardware components and the measurements that we would
need to evaluate contention on each of them (see Table I).

TABLE I
HARDWARE COMPONENTS POTENTIALLY RELATED TO NETWORK

CONGESTION AND THEIR CORRESPONDING INDICATORS

Hardware resource Contention indicator

Source node Injection FIFO length
Network link Number of sent packets
Intermediate router Receive buffer length
All Number of hops (dilation)

At the source node, a message is split into several packets
that are enqueued in network injection FIFOs (there are several
FIFOs per node). Depending on the algorithm used to assign
packets to injection FIFOs, there may be contention for these
FIFOs among packets of one or multiple messages. From
the injection FIFOs, packets are transferred to network links,
which are typically shared by many messages when multiple
routes pass through the same links. When multiple messages
share the same links, the effective bandwidth is less than the
peak due to link contention.

Packets may stall on a router because the next link is busy
or because the destination node is unable to process incoming
packets at their arrival rate. When this happens, routers store
packets temporarily in receive buffers. Stalled packets may
cause congestion when these buffers become full. Finally, each
intermediate component that a message passes through along
its route increases the chance of network congestion. So, the
number of hops a message travels, also referred to as dilation,
can also be an important indicator of congestion.

III. METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we describe the process of gathering and
preparing the input data for machine learning, the communi-
cation kernels and applications we use, and the step-by-step

methodology we have developed to apply supervised learning
algorithms to train our models.

A. Gathering data for supervised learning
The goal of this paper is to find correlations of network

and communication related metrics with application execution
time. In machine learning terms, the metrics are features,
or inputs to machine learning algorithms, and the execution
time is the dependent variable. Our dataset thus consists of a
tuple of features and the execution time for each experiment,
which is called a sample in machine learning. Each sample or
experiment is a single run of the application.

We use the technique of task mapping to create a dataset
of several samples for each application that is large enough
to be statistically meaningful. Task mapping allows us to
change the placement of application processes on the network,
thereby changing the flow of messages and the corresponding
execution time. This allows us to collect network hardware
counters and execution time for different configurations of
running the same application executable.

In this paper, we focus on torus interconnects, in particular,
on the five-dimensional (5D) torus network, which provides an
interesting experimental testbed to study the effects of network
congestion. All the experimental data for this study has been
collected on Vulcan, an IBM Blue Gene/Q installation at
LLNL. We use Rubik [14] to generate many different task
mappings of the code running on a 5D torus.

TABLE II
LIST OF COMMUNICATION METRICS (FEATURES) USED AS INPUTS TO THE
MACHINE LEARNING MODEL. THE COLORS IN THIS TABLE CORRESPOND

TO DIFFERENT HARDWARE COMPONENTS IN TABLE I

Feature name Description

avg dilation AO Avg. dilation of average outliers (AO)
max dilation Maximum dilation
sum dilation AO Sum of dilation of AO

avg bytes Avg. bytes per link
avg bytes AO Avg. bytes per link for AO
avg bytes TO Avg. bytes per link for top outliers (TO)
max bytes Maximum bytes on a link
#links AO bytes No. of AO links w.r.t. bytes

avg stalls Avg. receive buffer length
avg stalls AO Avg. receive buffer length for AO
avg stalls TO Avg. receive buffer length for TO
max stalls Maximum receive buffer length
#links AO stalls No. of AO links w.r.t. recv buffer length

avg stallspp Avg. number of stalls per rcv’d packet
avg stallspp AO Avg. no. of stalls per packet for AO
avg stallspp TO Avg. no. of stalls per packet for TO
max stallspp Maximum number of stalls per packet
#links AO stallspp No. of AO links w.r.t. stalls per packet

max inj FIFO Maximum injection FIFO length

Based on the list of hardware components that could con-
tribute to network congestion (Table I), we gather communi-
cation data from three network hardware counters: the number
of packets sent on each link, the receive buffer length and the

On the network On the network

 Reception Network
FIFOs (per node)

Processor

 Reception Memory
FIFOs (per task)

Router

Destination node

Intermediate buffers

Router

Intermediate node

Reception Injection

Abhinav Bhatele

Gathering data for machine learning

• Collect network hardware counters data on IBM Blue Gene/Q and use a functional
simulator

• Use Rubik task mappings to get a range of execution times for the same application

6

Abhinav Bhatele

Gathering data for machine learning

• Collect network hardware counters data on IBM Blue Gene/Q and use a functional
simulator

• Use Rubik task mappings to get a range of execution times for the same application

6

• We analyze the relative impact of different features on
predicting execution times to identify hardware compo-
nents that contribute the most to network congestion.

• We demonstrate our technique using various communi-
cation kernels as well as two scalable, communication-
heavy applications, MILC [12] and pF3D [13].

The prediction techniques presented in this paper are widely
applicable to a variety of scenarios, such as, (1) creating offline
prediction models that can be used for low overhead tuning de-
cisions to find the best configuration parameters, (2) predicting
the execution time in new setups, e.g., on a different number
of nodes, or different input datasets, or even for an unknown
code, (3) identifying the root causes of network congestion on
different architectures, and (4) generating task mappings for
good performance.

II. POTENTIAL ROOT CAUSES OF NETWORK CONGESTION

When messages travel over the interconnection network,
they are broken into smaller units: packets, chunks and flits.
These pass through various hardware components, any or all of
which can delay the communication [10]. We briefly explain
the hardware components and the measurements that we would
need to evaluate contention on each of them (see Table I).

TABLE I
HARDWARE COMPONENTS POTENTIALLY RELATED TO NETWORK

CONGESTION AND THEIR CORRESPONDING INDICATORS

Hardware resource Contention indicator

Source node Injection FIFO length
Network link Number of sent packets
Intermediate router Receive buffer length
All Number of hops (dilation)

At the source node, a message is split into several packets
that are enqueued in network injection FIFOs (there are several
FIFOs per node). Depending on the algorithm used to assign
packets to injection FIFOs, there may be contention for these
FIFOs among packets of one or multiple messages. From
the injection FIFOs, packets are transferred to network links,
which are typically shared by many messages when multiple
routes pass through the same links. When multiple messages
share the same links, the effective bandwidth is less than the
peak due to link contention.

Packets may stall on a router because the next link is busy
or because the destination node is unable to process incoming
packets at their arrival rate. When this happens, routers store
packets temporarily in receive buffers. Stalled packets may
cause congestion when these buffers become full. Finally, each
intermediate component that a message passes through along
its route increases the chance of network congestion. So, the
number of hops a message travels, also referred to as dilation,
can also be an important indicator of congestion.

III. METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we describe the process of gathering and
preparing the input data for machine learning, the communi-
cation kernels and applications we use, and the step-by-step

methodology we have developed to apply supervised learning
algorithms to train our models.

A. Gathering data for supervised learning
The goal of this paper is to find correlations of network

and communication related metrics with application execution
time. In machine learning terms, the metrics are features,
or inputs to machine learning algorithms, and the execution
time is the dependent variable. Our dataset thus consists of a
tuple of features and the execution time for each experiment,
which is called a sample in machine learning. Each sample or
experiment is a single run of the application.

We use the technique of task mapping to create a dataset
of several samples for each application that is large enough
to be statistically meaningful. Task mapping allows us to
change the placement of application processes on the network,
thereby changing the flow of messages and the corresponding
execution time. This allows us to collect network hardware
counters and execution time for different configurations of
running the same application executable.

In this paper, we focus on torus interconnects, in particular,
on the five-dimensional (5D) torus network, which provides an
interesting experimental testbed to study the effects of network
congestion. All the experimental data for this study has been
collected on Vulcan, an IBM Blue Gene/Q installation at
LLNL. We use Rubik [14] to generate many different task
mappings of the code running on a 5D torus.

TABLE II
LIST OF COMMUNICATION METRICS (FEATURES) USED AS INPUTS TO THE
MACHINE LEARNING MODEL. THE COLORS IN THIS TABLE CORRESPOND

TO DIFFERENT HARDWARE COMPONENTS IN TABLE I

Feature name Description

avg dilation AO Avg. dilation of average outliers (AO)
max dilation Maximum dilation
sum dilation AO Sum of dilation of AO

avg bytes Avg. bytes per link
avg bytes AO Avg. bytes per link for AO
avg bytes TO Avg. bytes per link for top outliers (TO)
max bytes Maximum bytes on a link
#links AO bytes No. of AO links w.r.t. bytes

avg stalls Avg. receive buffer length
avg stalls AO Avg. receive buffer length for AO
avg stalls TO Avg. receive buffer length for TO
max stalls Maximum receive buffer length
#links AO stalls No. of AO links w.r.t. recv buffer length

avg stallspp Avg. number of stalls per rcv’d packet
avg stallspp AO Avg. no. of stalls per packet for AO
avg stallspp TO Avg. no. of stalls per packet for TO
max stallspp Maximum number of stalls per packet
#links AO stallspp No. of AO links w.r.t. stalls per packet

max inj FIFO Maximum injection FIFO length

Based on the list of hardware components that could con-
tribute to network congestion (Table I), we gather communi-
cation data from three network hardware counters: the number
of packets sent on each link, the receive buffer length and the

Abhinav Bhatele

Gathering data for machine learning

7

• We analyze the relative impact of different features on
predicting execution times to identify hardware compo-
nents that contribute the most to network congestion.

• We demonstrate our technique using various communi-
cation kernels as well as two scalable, communication-
heavy applications, MILC [12] and pF3D [13].

The prediction techniques presented in this paper are widely
applicable to a variety of scenarios, such as, (1) creating offline
prediction models that can be used for low overhead tuning de-
cisions to find the best configuration parameters, (2) predicting
the execution time in new setups, e.g., on a different number
of nodes, or different input datasets, or even for an unknown
code, (3) identifying the root causes of network congestion on
different architectures, and (4) generating task mappings for
good performance.

II. POTENTIAL ROOT CAUSES OF NETWORK CONGESTION

When messages travel over the interconnection network,
they are broken into smaller units: packets, chunks and flits.
These pass through various hardware components, any or all of
which can delay the communication [10]. We briefly explain
the hardware components and the measurements that we would
need to evaluate contention on each of them (see Table I).

TABLE I
HARDWARE COMPONENTS POTENTIALLY RELATED TO NETWORK

CONGESTION AND THEIR CORRESPONDING INDICATORS

Hardware resource Contention indicator

Source node Injection FIFO length
Network link Number of sent packets
Intermediate router Receive buffer length
All Number of hops (dilation)

At the source node, a message is split into several packets
that are enqueued in network injection FIFOs (there are several
FIFOs per node). Depending on the algorithm used to assign
packets to injection FIFOs, there may be contention for these
FIFOs among packets of one or multiple messages. From
the injection FIFOs, packets are transferred to network links,
which are typically shared by many messages when multiple
routes pass through the same links. When multiple messages
share the same links, the effective bandwidth is less than the
peak due to link contention.

Packets may stall on a router because the next link is busy
or because the destination node is unable to process incoming
packets at their arrival rate. When this happens, routers store
packets temporarily in receive buffers. Stalled packets may
cause congestion when these buffers become full. Finally, each
intermediate component that a message passes through along
its route increases the chance of network congestion. So, the
number of hops a message travels, also referred to as dilation,
can also be an important indicator of congestion.

III. METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we describe the process of gathering and
preparing the input data for machine learning, the communi-
cation kernels and applications we use, and the step-by-step

methodology we have developed to apply supervised learning
algorithms to train our models.

A. Gathering data for supervised learning
The goal of this paper is to find correlations of network

and communication related metrics with application execution
time. In machine learning terms, the metrics are features,
or inputs to machine learning algorithms, and the execution
time is the dependent variable. Our dataset thus consists of a
tuple of features and the execution time for each experiment,
which is called a sample in machine learning. Each sample or
experiment is a single run of the application.

We use the technique of task mapping to create a dataset
of several samples for each application that is large enough
to be statistically meaningful. Task mapping allows us to
change the placement of application processes on the network,
thereby changing the flow of messages and the corresponding
execution time. This allows us to collect network hardware
counters and execution time for different configurations of
running the same application executable.

In this paper, we focus on torus interconnects, in particular,
on the five-dimensional (5D) torus network, which provides an
interesting experimental testbed to study the effects of network
congestion. All the experimental data for this study has been
collected on Vulcan, an IBM Blue Gene/Q installation at
LLNL. We use Rubik [14] to generate many different task
mappings of the code running on a 5D torus.

TABLE II
LIST OF COMMUNICATION METRICS (FEATURES) USED AS INPUTS TO THE
MACHINE LEARNING MODEL. THE COLORS IN THIS TABLE CORRESPOND

TO DIFFERENT HARDWARE COMPONENTS IN TABLE I

Feature name Description

avg dilation AO Avg. dilation of average outliers (AO)
max dilation Maximum dilation
sum dilation AO Sum of dilation of AO

avg bytes Avg. bytes per link
avg bytes AO Avg. bytes per link for AO
avg bytes TO Avg. bytes per link for top outliers (TO)
max bytes Maximum bytes on a link
#links AO bytes No. of AO links w.r.t. bytes

avg stalls Avg. receive buffer length
avg stalls AO Avg. receive buffer length for AO
avg stalls TO Avg. receive buffer length for TO
max stalls Maximum receive buffer length
#links AO stalls No. of AO links w.r.t. recv buffer length

avg stallspp Avg. number of stalls per rcv’d packet
avg stallspp AO Avg. no. of stalls per packet for AO
avg stallspp TO Avg. no. of stalls per packet for TO
max stallspp Maximum number of stalls per packet
#links AO stallspp No. of AO links w.r.t. stalls per packet

max inj FIFO Maximum injection FIFO length

Based on the list of hardware components that could con-
tribute to network congestion (Table I), we gather communi-
cation data from three network hardware counters: the number
of packets sent on each link, the receive buffer length and the

Source Node

Intermediate
Router

Network Link

All Resources

Abhinav Bhatele

Experimental Setup

• Three benchmarks: 5-point 2D Halo, 15-point 3D Halo, All-to-all over sub-
communicators

• Two scientific applications: pF3D, MILC

• Regression methods in scikit-learn: extremely randomized trees, gradient boosted
regression trees

8

TABLE III
SIZES OF THE INPUT DATASETS IN TERMS OF THE NUMBER OF EXECUTIONS OR SAMPLES FOR THE DIFFERENT CODES

2D Halo 3D Halo Sub A2A MILC pF3D Total
#Nodes 16 KB 4 MB 16 KB 4 MB 16 KB 4 MB

1024 84 84 84 84 84 84 208 94 806
4096 84 84 84 84 84 84 103 103 710

Total 168 168 168 168 168 168 311 197 1516

number of packets received on each link. We use analytical
modeling to obtain data for two other sources: the injection
FIFO length and the dilation for each message. Data from
these five sources is broken down into nineteen features and
grouped into five categories denoting the source: dilation,
bytes, stalls, stallspp, injFIFO (see Table II). The receive buffer
length is referred to as stalls in the rest of the paper because
it indicates the number of times different packets are stalled
on intermediate nodes. Stallspp refers to the average number
of stalls observed per packet.

The raw data we obtain for each execution is gathered per
link in the network. To train our models, we require a single
value for each feature aggregated over all the links. To achieve
this, we use aggregates such as the average or maximum value
of a feature over all links. We also consider a smaller subset
of links from the distribution, such as only those with a value
greater than the mean (average outliers or AO), or those that
are in the top 5% of the distribution (top outliers or TO). This
helps us create several different aggregated features for each
source or hardware component from which we obtained raw
data. In the end, each execution (one sample) is represented by
the nineteen features shown in Table II and a corresponding
execution time.

B. Description of parallel codes used

We use three different communication kernels and two
scalable, communication-heavy, production applications for
the analysis in this paper. A brief introduction to each is
provided below:

Five-point 2D halo exchange: The 2D Halo communication
kernel uses a 2D grid of MPI processes to exchange four
messages with two neighbors in each dimension.

15-point 3D halo exchange: The 3D Halo communication
kernel uses a 3D grid of MPI processes to exchange fourteen
messages with its near-neighbors (six faces and eight corners).

All-to-all over sub-communicators: The Sub A2A communi-
cation kernel also uses a 3D process grid but performs all-to-
alls on sub-communicators of size 64, formed from processes
in one of the three dimensions.

MILC: MILC [12] is a Lattice Quantum Chromodynamics
(QCD) application that does near-neighbor exchanges over a
4D process grid, similar to 2D and 3D Halo.

pF3D: pF3D [13] is a laser-plasma interaction code that

performs all-to-alls over sub-communicators (similar to Sub
A2A) and near-neighbor exchanges over a 3D process grid.

The communication kernels are executed with two different
message sizes – 16 KB and 4 MB to evaluate different MPI
performance regimes. The computational load of both MILC
and pF3D is almost perfectly balanced across MPI processes.
This allows us to focus on their communication, which is a
significant portion of their overall execution time. We ran all
the codes on 1024 and 4096 nodes of Blue Gene/Q to study
the congestion behavior on different torus sizes. Depending on
the code, we placed between 16 and 64 processes per node.

Table III lists the number of task mappings that were gen-
erated for each kernel or application at each node count. For
example, for 2D Halo, we created 84 different task mappings
and ran them for the two message sizes – 16 KB and 4 MB
(168 in total). Added across all the communication kernels,
we had 1008 different executions (84 per dataset over twelve
datasets) and for the two applications, we had 508 executions
(in four datasets). Section IV describes the process of splitting
the individual datasets into training and testing sets.

C. Learning predictive models

Building a non-parametric regression model from data is a
common task in machine learning applications. In theory, a
domain expert specifies an appropriate model and its param-
eters are suitably adjusted based on observed data. However,
in practice, we lack the knowledge of an underlying model
for real applications. Hence, it is typical to infer models
directly from data, which requires that supervised data with the
desired target variables be prepared beforehand. A variety of
such data-driven modeling algorithms have been proposed in
the machine learning literature [15], [16], and these methods
provide a single, “strong” predictive model with good gen-
eralization characteristics. An alternative approach is to infer
an ensemble of relatively “weak” models to obtain a stronger
ensemble prediction [17].

Ensemble methods: The primary reasons for considering en-
semble models are: (1) Statistical: different predictive models
may perform similarly on the training data, when learned
from a limited number of training samples. However, the
performance of each of these models with test data can be
poor. By averaging representations obtained from an ensemble,
we may obtain an approximation closer to the true test data;
(2) Computational: even with large training sets, the modeling
technique might not reach the global optimum and using an

Abhinav Bhatele

Predicting the execution time

• Scale the input features to values between 0 and 1

• Split samples into training and testing set (2/3 : 1/3)

• Generate all possible combinations (219) of the 19 input features

• Parallel runs to try all combinations and report prediction scores

9

Abhinav Bhatele

Evaluation criteria

• Kendall rank correlation coefficient

• Coefficient of determination, R2

10

Fig. 2. Highest prediction scores obtained for the individual datasets using Extremely Randomized Trees (left plot) and Gradient Boosted Regression Tree
(right plot). Adjoining pairs of vertical bars represent the RCC and R2 values for each of the sixteen datasets.

R2 statistic. The RCC score measures the degree of simi-
larity in the rankings of two datasets ({x1, x2, · · · , xn} and
{y1, y2, · · · , yn}), and can be defined as

RCC =
⇣ X

0<=i<n

X

0<=j<i

concordij
⌘
/(

n(n� 1)

2
)

concord ij =

8
><

>:

1, if xi >= xj & yi >= yj
1, if xi < xj & yi < yj
0, otherwise

The RCC score assumes the value 1 when the two rankings
completely agree, while the value 0 indicates complete dis-
agreement. The coefficient of determination is another popular
statistic that measures how well a statistical model fits the data.

R2(y, ŷ) = 1�
P

i
(yi � ŷi)2P
i
(yi � ȳ)2

where ŷi is the predicted value of the ith sample, yi is the
corresponding true value, and

ȳ =
1

nsamples

X

i

yi

denotes the sample mean of the observed data. We use the
RCC score to compare the rankings of the true and predicted
values in the testing set and R2 to compare the true and
predicted values of the samples directly.

IV. PREDICTION ON INDIVIDUAL DATASETS

We begin by using supervised learning to predict the execu-
tion time based on communication features, and we evaluate
the prediction accuracy. We take the sixteen datasets shown
in Table III, and we learn models for each one independently
using all possible combinations of input features.

Figure 2 shows the highest prediction scores (both RCC
and R2) obtained for any feature combination for each of
the sixteen datasets. Adjoining pairs of vertical bars represent
the RCC and R2 values for each of the sixteen datasets.
The left plot illustrates results obtained using the extremely
randomized trees algorithm, and the right plot shows similar

results using GBRT with the Huber loss function. Though
either of the methods can be used for subsequent analysis, we
choose GBRT for the results in the rest of the paper because
of its flexibility in allowing parameterized loss functions.

The first thing to observe in Figure 2 is that on an average,
the prediction scores are very high, which suggests that the
communication data and execution time for our datasets are
highly correlated. When predicting the execution time of 2D
and 3D Halo, we obtain RCCs in the range 0.95 � 1.0 and
R2 in the range 0.94 � 0.996. A trend that is not quite
discernible from the plots is that, as we increase the amount of
communication being performed (from 2D Halo to 3D Halo
to Sub A2A), the predictions become stronger. For Sub A2A,
the RCC and R2 values are between 0.997 and 1.0. This is not
unexpected – the more a parallel code stresses the network,
higher is the correlation between the communication features
that represent congestion and execution time.

Even for production applications, which have more complex
communication patterns, we observe very high prediction
scores. MILC, which performs a 4D halo, is communication-
heavy and task mapping sensitive. Other than the RCC scores
on 1K nodes, the prediction scores for MILC are very high
(R2 between 0.98 and 0.999). pF3D has communication
patterns similar to Sub A2A along with a near-neighbor
communication, which results in high RCC values between
0.975 and 0.991. This can be attributed to the structured and
communication-intensive all-to-all operations whose execution
time is heavily dependent on network congestion.

The prediction scores for pF3D have improved considerably
compared to our previous work. On 1K nodes, the R2 values
have improved from 0.93 to 0.995. On 4K nodes, previously,
our best RCC scores for pF3D were around 0.75 and R2

scores were close to 0. Now, both the scores are in the range
0.975�0.996, which is a significant improvement. This is due
to the removal of a performance bug in the code, which helps
focus the performance on communication properties, and also
in part, from the use of an exhaustive search to find the best
possible combination of features.

As we compare the prediction quality of the supervised

Fig. 2. Highest prediction scores obtained for the individual datasets using Extremely Randomized Trees (left plot) and Gradient Boosted Regression Tree
(right plot). Adjoining pairs of vertical bars represent the RCC and R2 values for each of the sixteen datasets.

R2 statistic. The RCC score measures the degree of simi-
larity in the rankings of two datasets ({x1, x2, · · · , xn} and
{y1, y2, · · · , yn}), and can be defined as

RCC =
⇣ X

0<=i<n

X

0<=j<i

concordij
⌘
/(

n(n� 1)

2
)

concord ij =

8
><

>:

1, if xi >= xj & yi >= yj
1, if xi < xj & yi < yj
0, otherwise

The RCC score assumes the value 1 when the two rankings
completely agree, while the value 0 indicates complete dis-
agreement. The coefficient of determination is another popular
statistic that measures how well a statistical model fits the data.

R2(y, ŷ) = 1�
P

i
(yi � ŷi)2P
i
(yi � ȳ)2

where ŷi is the predicted value of the ith sample, yi is the
corresponding true value, and

ȳ =
1

nsamples

X

i

yi

denotes the sample mean of the observed data. We use the
RCC score to compare the rankings of the true and predicted
values in the testing set and R2 to compare the true and
predicted values of the samples directly.

IV. PREDICTION ON INDIVIDUAL DATASETS

We begin by using supervised learning to predict the execu-
tion time based on communication features, and we evaluate
the prediction accuracy. We take the sixteen datasets shown
in Table III, and we learn models for each one independently
using all possible combinations of input features.

Figure 2 shows the highest prediction scores (both RCC
and R2) obtained for any feature combination for each of
the sixteen datasets. Adjoining pairs of vertical bars represent
the RCC and R2 values for each of the sixteen datasets.
The left plot illustrates results obtained using the extremely
randomized trees algorithm, and the right plot shows similar

results using GBRT with the Huber loss function. Though
either of the methods can be used for subsequent analysis, we
choose GBRT for the results in the rest of the paper because
of its flexibility in allowing parameterized loss functions.

The first thing to observe in Figure 2 is that on an average,
the prediction scores are very high, which suggests that the
communication data and execution time for our datasets are
highly correlated. When predicting the execution time of 2D
and 3D Halo, we obtain RCCs in the range 0.95 � 1.0 and
R2 in the range 0.94 � 0.996. A trend that is not quite
discernible from the plots is that, as we increase the amount of
communication being performed (from 2D Halo to 3D Halo
to Sub A2A), the predictions become stronger. For Sub A2A,
the RCC and R2 values are between 0.997 and 1.0. This is not
unexpected – the more a parallel code stresses the network,
higher is the correlation between the communication features
that represent congestion and execution time.

Even for production applications, which have more complex
communication patterns, we observe very high prediction
scores. MILC, which performs a 4D halo, is communication-
heavy and task mapping sensitive. Other than the RCC scores
on 1K nodes, the prediction scores for MILC are very high
(R2 between 0.98 and 0.999). pF3D has communication
patterns similar to Sub A2A along with a near-neighbor
communication, which results in high RCC values between
0.975 and 0.991. This can be attributed to the structured and
communication-intensive all-to-all operations whose execution
time is heavily dependent on network congestion.

The prediction scores for pF3D have improved considerably
compared to our previous work. On 1K nodes, the R2 values
have improved from 0.93 to 0.995. On 4K nodes, previously,
our best RCC scores for pF3D were around 0.75 and R2

scores were close to 0. Now, both the scores are in the range
0.975�0.996, which is a significant improvement. This is due
to the removal of a performance bug in the code, which helps
focus the performance on communication properties, and also
in part, from the use of an exhaustive search to find the best
possible combination of features.

As we compare the prediction quality of the supervised

Abhinav Bhatele

Prediction on individual datasets

11

����

����

����

����

����

�	

�� �� �� �� �� �� �� �� �� ��

��
��
��
���
	

��
��
�

����
��
�����
����������������
����

!"#$%&'�(���)*)#$�����*$�����

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1K 4K 1K 4K 1K 4K 1K 4K 1K 4K

Pr
ed

ic
tio

n
sc

or
e

RCC and R2 (Extremely Randomized Trees)

16KB RCC 16KB R2 4MB RCC 4MB R2 RCC R2

pF3DMILCSub A2A3D Halo2D Halo

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1K 4K 1K 4K 1K 4K 1K 4K 1K 4K

RCC and R2 (GBRT, Huber loss function)

pF3DMILCSub A2A3D Halo2D Halo

Fig. 2. Highest prediction scores obtained for the individual datasets using Extremely Randomized Trees (left plot) and Gradient Boosted Regression Tree
(right plot). Adjoining pairs of vertical bars represent the RCC and R2 values for each of the sixteen datasets.

R2 statistic. The RCC score measures the degree of simi-
larity in the rankings of two datasets ({x1, x2, · · · , xn} and
{y1, y2, · · · , yn}), and can be defined as

RCC =
⇣ X

0<=i<n

X

0<=j<i

concordij
⌘
/(

n(n� 1)

2
)

concord ij =

8
><

>:

1, if xi >= xj & yi >= yj
1, if xi < xj & yi < yj
0, otherwise

The RCC score assumes the value 1 when the two rankings
completely agree, while the value 0 indicates complete dis-
agreement. The coefficient of determination is another popular
statistic that measures how well a statistical model fits the data.

R2(y, ŷ) = 1�
P

i
(yi � ŷi)2P
i
(yi � ȳ)2

where ŷi is the predicted value of the ith sample, yi is the
corresponding true value, and

ȳ =
1

nsamples

X

i

yi

denotes the sample mean of the observed data. We use the
RCC score to compare the rankings of the true and predicted
values in the testing set and R2 to compare the true and
predicted values of the samples directly.

IV. PREDICTION ON INDIVIDUAL DATASETS

We begin by using supervised learning to predict the execu-
tion time based on communication features, and we evaluate
the prediction accuracy. We take the sixteen datasets shown
in Table III, and we learn models for each one independently
using all possible combinations of input features.

Figure 2 shows the highest prediction scores (both RCC
and R2) obtained for any feature combination for each of
the sixteen datasets. Adjoining pairs of vertical bars represent
the RCC and R2 values for each of the sixteen datasets.
The left plot illustrates results obtained using the extremely
randomized trees algorithm, and the right plot shows similar

results using GBRT with the Huber loss function. Though
either of the methods can be used for subsequent analysis, we
choose GBRT for the results in the rest of the paper because
of its flexibility in allowing parameterized loss functions.

The first thing to observe in Figure 2 is that on an average,
the prediction scores are very high, which suggests that the
communication data and execution time for our datasets are
highly correlated. When predicting the execution time of 2D
and 3D Halo, we obtain RCCs in the range 0.95 � 1.0 and
R2 in the range 0.94 � 0.996. A trend that is not quite
discernible from the plots is that, as we increase the amount of
communication being performed (from 2D Halo to 3D Halo
to Sub A2A), the predictions become stronger. For Sub A2A,
the RCC and R2 values are between 0.997 and 1.0. This is not
unexpected – the more a parallel code stresses the network,
higher is the correlation between the communication features
that represent congestion and execution time.

Even for production applications, which have more complex
communication patterns, we observe very high prediction
scores. MILC, which performs a 4D halo, is communication-
heavy and task mapping sensitive. Other than the RCC scores
on 1K nodes, the prediction scores for MILC are very high
(R2 between 0.98 and 0.999). pF3D has communication
patterns similar to Sub A2A along with a near-neighbor
communication, which results in high RCC values between
0.975 and 0.991. This can be attributed to the structured and
communication-intensive all-to-all operations whose execution
time is heavily dependent on network congestion.

The prediction scores for pF3D have improved considerably
compared to our previous work. On 1K nodes, the R2 values
have improved from 0.93 to 0.995. On 4K nodes, previously,
our best RCC scores for pF3D were around 0.75 and R2

scores were close to 0. Now, both the scores are in the range
0.975�0.996, which is a significant improvement. This is due
to the removal of a performance bug in the code, which helps
focus the performance on communication properties, and also
in part, from the use of an exhaustive search to find the best
possible combination of features.

As we compare the prediction quality of the supervised

Abhinav Bhatele

Feature importance (individual datasets)

12

 0

 0.2

 0.4

 0.6

 0.8

 1

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

1K 4K 1K 4K

R
an

k

 2D Halo 3D Halo Sub A2A MILC pF3D

Feature ranks for RCC (GBRT, Huber loss function)

Dilation Bytes Stalls Stallspp InjFIFO

 0

 0.2

 0.4

 0.6

 0.8

 1

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

1K 4K 1K 4K

 2D Halo 3D Halo Sub A2A MILC pF3D

Feature ranks for R2 (GBRT, Huber loss function)

Fig. 3. Ranks of different features in the models that yield the highest RCC (left plot) and R2 scores (right plot) for individual datasets using Gradient Tree
Boosting (loss function = ‘Huber’). Each stacked bar represents the ranks of the nineteen features (colored by categories) for one of the sixteen datasets.

Fig. 4. Ranks of different features for the top twenty RCC (left plot) and R2 scores (right plot) when using the 1K nodes data to predict the 4K nodes data
using GBRT (the top twenty scores are shown in each case using one stacked bar each)

learning models for different codes, a natural question that
comes up is – which features are important in predicting the
execution time for different kernels and applications? Figure 3
presents the relative importance or ranks of different features
in the models that yield the highest RCC (left plot) and R2

values (right plot). Each stacked bar represents the ranks of the
nineteen features (colored by categories) for one of the sixteen
datasets. As we can see, the relative importance of features
changes depending on the code and on whether RCC or R2 is
being considered. The only conclusive observation that can be
drawn from these plots is that the number of bytes flowing over
the network has a significant impact on execution time, which
is to be expected. Ideally, we would like to identify a smaller
subset of features that can predict the execution time well for
a range of applications, message sizes and node counts. We
discuss this in detail in Section VI.

V. GENERALIZATION CHARACTERISTICS

In this section, we analyze the possibility of using the data
gathered for a few different codes to predict novel scenarios or
applications. The idea is to test if we can apply this approach
to predict the execution time in new setups, e.g., on a different
number of nodes, or different input datasets, or even for an

unknown code – one we have not measured directly yet. We
try two different prediction scenarios for understanding the
generalization characteristics of our approach.

TABLE IV
BEST PREDICTION SCORES FOR GENERALIZATION EXPERIMENTS

Training set Testing set RCC R2

All 1K samples All 4K samples 0.865 0.673
All kernels MILC (1K + 4K) 0.772 0.0
All kernels pF3D (1K + 4K) 0.874 0.0

In the first scenario, we combine the sixteen datasets by
node count into two groups and use the 1K-node data for train-
ing and the 4K-node data for testing. In the second scenario,
we group the datasets by kernels and production applications,
i.e., the twelve datasets for communication kernels combined
together are used for training and the four application datasets
are used for testing. Table IV shows the best prediction scores
we obtain for the different cases by performing an exhaustive
search on feature combinations. The network dimensions of
the 5D torus and the congestion behavior can be very different
on 4K nodes from that on 1K nodes. Even so, the models are
able to predict the execution time on 4K nodes reasonably well

��

����

����

����

����

��

����
��
���
��
����
��
���
��
����
��
���
��
����
��
���
��
����
��
���
��
����
��
���
��
�� �� �� ��

�
��
�

��������	�
��
����������	�
��
���������������������������������	��

���������������
�� ���!"# $%�
������
������&�'
�(

	'���'
�
#)���
������

��������
��*���+

��

����

����

����

����

��

����
��

���
��

����
��

���
��

����
��

���
��

����
��

���
��

����
��

���
��

����
��

���
��

�� �� �� ��

��������	�
��
����������	�
��
���������������������������������	�

���������������
�� ��!"# $%�
������
������&�'
�(

Abhinav Bhatele

Identifying important features

• Use quantile loss function in the GBRT regressor

13

Fig. 5. Ranks of different features for the top twenty RCC scores when using the kernels data to predict the execution time for MILC (left plot) and pF3D
(right plot) using GBRT (the top twenty scores are shown in each case using one stacked bar each)

using samples from 1K nodes. We achieve a RCC of 0.865 for
the best feature combination and a R2 value of 0.673. Figure 4
shows the trend of the relative feature importance (rank) as we
obtain higher RCC (left plot) and R2 scores (right plot). Note
that feature combinations for the top twenty scores are shown
in each case using one stacked bar each. Similar to Figure 3,
we can see that bytes on the link is a prominent feature again.
Injection FIFO length also shows up as consistently important
for high RCC scores (left plot).

The even more interesting scenario is when we use a dataset
created from communication kernels to predict production ap-
plications. The dataset from all kernels combined together may
or may not include samples that represent application behavior.
Table IV shows that the RCC value for predicting pF3D’s
performance is high and that for MILC is also reasonable
(0.772). The R2 scores are 0 when using the communication
kernels to predict the execution time for applications. This is
an artifact of applying scaling to the datasets before learning
the model. Instead of scaling, if we apply standardization
on the training and testing sets, we would expect decent R2

values. The feature importance plots for MILC and pF3D
(Figure 5) show that different features are relatively more
important for the two applications. In the case of MILC,
dilation and stall-based features are more important whereas
in the case of pF3D, network bytes is the most important
followed by stall-based features. As stated in the previous
section, the ideal situation would be to identify a subset of
features that yields high correlations for a variety of scenarios.

VI. IDENTIFYING RELEVANT FEATURE SUBSETS

The variability in the importance (rank) of different features
in the regression models learned for different parallel codes
makes it challenging to identify a common set of factors
that contribute the most to network congestion. Further, some
of the features considered in our analysis might be strongly
correlated to one another, thereby introducing instabilities in
the model selection process across multiple datasets. In order
to overcome these challenges, we propose to infer regression
models under different quantiles, and analyze them to identify

the most relevant features in a stable manner (irrespective
of our choice of training sets). In addition to revealing the
hardware components that are the main culprits behind net-
work congestion, this analysis can also provide insights about
applications not directly measured and analyzed in this paper.

��

����

����

����

����

����

����

�	��

�� ���� ���� ���� ���� ���� ���� �	��

��
��
��
��
��
	

��
��

�
�

��
�����
������
�����

������������������ �����

�!��"
������
�!#�"
������

Fig. 6. GBRT regression on the Apps dataset using different quantile loss
functions. The lower quantile regression function underpredicts for samples
with high execution time, while predicting effectively for those with low
execution times.

A. Feature selection from extreme quantiles

For the analysis presented in this section, we use GBRT
with the quantile loss function defined in equation (2) in
Section III-C. In order to identify the most relevant features
for predicting execution time, we propose to analyze the
regression models at lower (↵ = 0.1) and higher (↵ = 0.9)
conditional quantiles. In particular, we consider the ranks
of the different features at the extreme quantiles. Instead
of inferring a single regression function that minimizes the

Abhinav Bhatele

Identifying important features

14

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

tes

#li
nk

s A
O

 by
tes

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

R
an

k

Feature subset selection based on Kernels

0.1 quantile 0.9 quantile

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

tes

#li
nk

s A
O

 by
tes

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

Feature subset selection based on Apps

0.1 quantile 0.9 quantile

Fig. 7. Ranks of different features obtained using GBRT with quantile loss functions at ↵ = 0.1 and ↵ = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is for a combined set of the two applications (four datasets).

average or median error for all data samples, the quantile loss
weights different regions in the function space asymmetrically
(see Figure 1). For example, in Figure 6, the lower quantile
model provides an accurate prediction for samples with low
execution times (bottom left corner), while making large errors
on samples with high execution times.

It turns out that for the datasets used in this paper, optimiz-
ing for the conditional quantiles inherently promotes sparsity
in the inferred model (Figure 7). This means that only a few
features show significant importance for prediction, and the
ranks of different features vary considerably in the case of
lower versus higher quantiles. This results in different features
being more important for the two quantiles. Figure 7 shows the
feature importance for the extreme quantiles for all the kernel
datasets combined together (left plot) and all the application
datasets combined together (right plot). In the left plot, we see
that the features avg bytes and avg stalls AO have a high rank
only when predicting at the higher quantile. On the other hand,
the feature avg stallspp is prominent in predicting at the lower
quantile and not used by the regression function optimized for
the higher quantile. In the right plot, we can observe similar
things about sum dilation AO, max inj FIFO, #links AO bytes
and avg stallspp.

We exploit these observations by selecting the most relevant
features from the models at different quantiles, and using this
subset of features to predict the execution time for different
applications. The steps involved in this proposed technique for
feature selection for a dataset are as follows:

• Create random splits of the dataset into training and
testing sets (70% for training and the rest for testing).

• Learn regression models using GBRT with quantile loss
functions at ↵ = 0.1 and ↵ = 0.9. We denote the feature
ranks in the two cases by ⌧0.1 and ⌧0.9 respectively.

• Repeat the above steps 50 times to avoid overfitting
and compute the average feature ranks for the extreme
quantiles from the 50 iterations.

• Identify the relevant features as those with either ⌧0.1
or ⌧0.9 greater than a pre-defined threshold t. In our
experiments, we fixed t at 0.1.

B. Results and discussion

We employ the feature selection technique explained above
on the following larger datasets formed by combining the
individual datasets in Table III:

1) 2D Halo (4 datasets)
2) 3D Halo (4 datasets)
3) Sub A2A (4 datasets)
4) Kernels (combination of (1), (2), and (3), 12 datasets)
5) MILC (2 datasets)
6) pF3D (2 datasets)
7) Apps (combination of (5) and (6), 4 datasets)
8) All (all 16 datasets added together)

The goal is to identify a common set of features that might
be relevant across multiple datasets. Figure 8 presents the
feature ranks obtained using the technique described above for
each of the larger datasets. Note that the importance/rank of
each feature is obtained by first identifying the smallest subset
of important features for each dataset and then performing
another cycle of training and testing to obtain the relative
importance of the features in this identified subset. The marker
colors for each row/dataset are scaled independently (maroon/
red is high and yellow is low).

Fig. 8. Comparison of the feature ranks obtained using the feature selection
technique applied to the eight larger datasets. Note that the marker colors for
each row are scaled independently (maroon/red is high and yellow is low).

Abhinav Bhatele

Identifying important features

14

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

tes

#li
nk

s A
O

 by
tes

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

R
an

k

Feature subset selection based on Kernels

0.1 quantile 0.9 quantile

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

tes

#li
nk

s A
O

 by
tes

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

Feature subset selection based on Apps

0.1 quantile 0.9 quantile

Fig. 7. Ranks of different features obtained using GBRT with quantile loss functions at ↵ = 0.1 and ↵ = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is for a combined set of the two applications (four datasets).

average or median error for all data samples, the quantile loss
weights different regions in the function space asymmetrically
(see Figure 1). For example, in Figure 6, the lower quantile
model provides an accurate prediction for samples with low
execution times (bottom left corner), while making large errors
on samples with high execution times.

It turns out that for the datasets used in this paper, optimiz-
ing for the conditional quantiles inherently promotes sparsity
in the inferred model (Figure 7). This means that only a few
features show significant importance for prediction, and the
ranks of different features vary considerably in the case of
lower versus higher quantiles. This results in different features
being more important for the two quantiles. Figure 7 shows the
feature importance for the extreme quantiles for all the kernel
datasets combined together (left plot) and all the application
datasets combined together (right plot). In the left plot, we see
that the features avg bytes and avg stalls AO have a high rank
only when predicting at the higher quantile. On the other hand,
the feature avg stallspp is prominent in predicting at the lower
quantile and not used by the regression function optimized for
the higher quantile. In the right plot, we can observe similar
things about sum dilation AO, max inj FIFO, #links AO bytes
and avg stallspp.

We exploit these observations by selecting the most relevant
features from the models at different quantiles, and using this
subset of features to predict the execution time for different
applications. The steps involved in this proposed technique for
feature selection for a dataset are as follows:

• Create random splits of the dataset into training and
testing sets (70% for training and the rest for testing).

• Learn regression models using GBRT with quantile loss
functions at ↵ = 0.1 and ↵ = 0.9. We denote the feature
ranks in the two cases by ⌧0.1 and ⌧0.9 respectively.

• Repeat the above steps 50 times to avoid overfitting
and compute the average feature ranks for the extreme
quantiles from the 50 iterations.

• Identify the relevant features as those with either ⌧0.1
or ⌧0.9 greater than a pre-defined threshold t. In our
experiments, we fixed t at 0.1.

B. Results and discussion

We employ the feature selection technique explained above
on the following larger datasets formed by combining the
individual datasets in Table III:

1) 2D Halo (4 datasets)
2) 3D Halo (4 datasets)
3) Sub A2A (4 datasets)
4) Kernels (combination of (1), (2), and (3), 12 datasets)
5) MILC (2 datasets)
6) pF3D (2 datasets)
7) Apps (combination of (5) and (6), 4 datasets)
8) All (all 16 datasets added together)

The goal is to identify a common set of features that might
be relevant across multiple datasets. Figure 8 presents the
feature ranks obtained using the technique described above for
each of the larger datasets. Note that the importance/rank of
each feature is obtained by first identifying the smallest subset
of important features for each dataset and then performing
another cycle of training and testing to obtain the relative
importance of the features in this identified subset. The marker
colors for each row/dataset are scaled independently (maroon/
red is high and yellow is low).

Fig. 8. Comparison of the feature ranks obtained using the feature selection
technique applied to the eight larger datasets. Note that the marker colors for
each row are scaled independently (maroon/red is high and yellow is low).

Abhinav Bhatele

Identifying important features

14

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

tes

#li
nk

s A
O

 by
tes

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

R
an

k

Feature subset selection based on Kernels

0.1 quantile 0.9 quantile

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

tes

#li
nk

s A
O

 by
tes

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

Feature subset selection based on Apps

0.1 quantile 0.9 quantile

Fig. 7. Ranks of different features obtained using GBRT with quantile loss functions at ↵ = 0.1 and ↵ = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is for a combined set of the two applications (four datasets).

average or median error for all data samples, the quantile loss
weights different regions in the function space asymmetrically
(see Figure 1). For example, in Figure 6, the lower quantile
model provides an accurate prediction for samples with low
execution times (bottom left corner), while making large errors
on samples with high execution times.

It turns out that for the datasets used in this paper, optimiz-
ing for the conditional quantiles inherently promotes sparsity
in the inferred model (Figure 7). This means that only a few
features show significant importance for prediction, and the
ranks of different features vary considerably in the case of
lower versus higher quantiles. This results in different features
being more important for the two quantiles. Figure 7 shows the
feature importance for the extreme quantiles for all the kernel
datasets combined together (left plot) and all the application
datasets combined together (right plot). In the left plot, we see
that the features avg bytes and avg stalls AO have a high rank
only when predicting at the higher quantile. On the other hand,
the feature avg stallspp is prominent in predicting at the lower
quantile and not used by the regression function optimized for
the higher quantile. In the right plot, we can observe similar
things about sum dilation AO, max inj FIFO, #links AO bytes
and avg stallspp.

We exploit these observations by selecting the most relevant
features from the models at different quantiles, and using this
subset of features to predict the execution time for different
applications. The steps involved in this proposed technique for
feature selection for a dataset are as follows:

• Create random splits of the dataset into training and
testing sets (70% for training and the rest for testing).

• Learn regression models using GBRT with quantile loss
functions at ↵ = 0.1 and ↵ = 0.9. We denote the feature
ranks in the two cases by ⌧0.1 and ⌧0.9 respectively.

• Repeat the above steps 50 times to avoid overfitting
and compute the average feature ranks for the extreme
quantiles from the 50 iterations.

• Identify the relevant features as those with either ⌧0.1
or ⌧0.9 greater than a pre-defined threshold t. In our
experiments, we fixed t at 0.1.

B. Results and discussion

We employ the feature selection technique explained above
on the following larger datasets formed by combining the
individual datasets in Table III:

1) 2D Halo (4 datasets)
2) 3D Halo (4 datasets)
3) Sub A2A (4 datasets)
4) Kernels (combination of (1), (2), and (3), 12 datasets)
5) MILC (2 datasets)
6) pF3D (2 datasets)
7) Apps (combination of (5) and (6), 4 datasets)
8) All (all 16 datasets added together)

The goal is to identify a common set of features that might
be relevant across multiple datasets. Figure 8 presents the
feature ranks obtained using the technique described above for
each of the larger datasets. Note that the importance/rank of
each feature is obtained by first identifying the smallest subset
of important features for each dataset and then performing
another cycle of training and testing to obtain the relative
importance of the features in this identified subset. The marker
colors for each row/dataset are scaled independently (maroon/
red is high and yellow is low).

Fig. 8. Comparison of the feature ranks obtained using the feature selection
technique applied to the eight larger datasets. Note that the marker colors for
each row are scaled independently (maroon/red is high and yellow is low).

Abhinav Bhatele

Identifying important features

14

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

tes

#li
nk

s A
O

 by
tes

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

R
an

k

Feature subset selection based on Kernels

0.1 quantile 0.9 quantile

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

tes

#li
nk

s A
O

 by
tes

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

Feature subset selection based on Apps

0.1 quantile 0.9 quantile

Fig. 7. Ranks of different features obtained using GBRT with quantile loss functions at ↵ = 0.1 and ↵ = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is for a combined set of the two applications (four datasets).

average or median error for all data samples, the quantile loss
weights different regions in the function space asymmetrically
(see Figure 1). For example, in Figure 6, the lower quantile
model provides an accurate prediction for samples with low
execution times (bottom left corner), while making large errors
on samples with high execution times.

It turns out that for the datasets used in this paper, optimiz-
ing for the conditional quantiles inherently promotes sparsity
in the inferred model (Figure 7). This means that only a few
features show significant importance for prediction, and the
ranks of different features vary considerably in the case of
lower versus higher quantiles. This results in different features
being more important for the two quantiles. Figure 7 shows the
feature importance for the extreme quantiles for all the kernel
datasets combined together (left plot) and all the application
datasets combined together (right plot). In the left plot, we see
that the features avg bytes and avg stalls AO have a high rank
only when predicting at the higher quantile. On the other hand,
the feature avg stallspp is prominent in predicting at the lower
quantile and not used by the regression function optimized for
the higher quantile. In the right plot, we can observe similar
things about sum dilation AO, max inj FIFO, #links AO bytes
and avg stallspp.

We exploit these observations by selecting the most relevant
features from the models at different quantiles, and using this
subset of features to predict the execution time for different
applications. The steps involved in this proposed technique for
feature selection for a dataset are as follows:

• Create random splits of the dataset into training and
testing sets (70% for training and the rest for testing).

• Learn regression models using GBRT with quantile loss
functions at ↵ = 0.1 and ↵ = 0.9. We denote the feature
ranks in the two cases by ⌧0.1 and ⌧0.9 respectively.

• Repeat the above steps 50 times to avoid overfitting
and compute the average feature ranks for the extreme
quantiles from the 50 iterations.

• Identify the relevant features as those with either ⌧0.1
or ⌧0.9 greater than a pre-defined threshold t. In our
experiments, we fixed t at 0.1.

B. Results and discussion

We employ the feature selection technique explained above
on the following larger datasets formed by combining the
individual datasets in Table III:

1) 2D Halo (4 datasets)
2) 3D Halo (4 datasets)
3) Sub A2A (4 datasets)
4) Kernels (combination of (1), (2), and (3), 12 datasets)
5) MILC (2 datasets)
6) pF3D (2 datasets)
7) Apps (combination of (5) and (6), 4 datasets)
8) All (all 16 datasets added together)

The goal is to identify a common set of features that might
be relevant across multiple datasets. Figure 8 presents the
feature ranks obtained using the technique described above for
each of the larger datasets. Note that the importance/rank of
each feature is obtained by first identifying the smallest subset
of important features for each dataset and then performing
another cycle of training and testing to obtain the relative
importance of the features in this identified subset. The marker
colors for each row/dataset are scaled independently (maroon/
red is high and yellow is low).

Fig. 8. Comparison of the feature ranks obtained using the feature selection
technique applied to the eight larger datasets. Note that the marker colors for
each row are scaled independently (maroon/red is high and yellow is low).

Abhinav Bhatele

Technique for feature selection

• Create split of dataset into training and testing set

• Learn GBRT regressor with quantile loss function at 0.1 quantile and 0.9 quantile

• Identify feature subsets that are important at different quantiles

• Use the subsets to identify new feature importances

15

Abhinav Bhatele

The causes of network congestion

16

Fig. 7. Ranks of different features obtained using GBRT with quantile loss functions at ↵ = 0.1 and ↵ = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is for a combined set of the two applications (four datasets).

average or median error for all data samples, the quantile loss
weights different regions in the function space asymmetrically
(see Figure 1). For example, in Figure 6, the lower quantile
model provides an accurate prediction for samples with low
execution times (bottom left corner), while making large errors
on samples with high execution times.

It turns out that for the datasets used in this paper, optimiz-
ing for the conditional quantiles inherently promotes sparsity
in the inferred model (Figure 7). This means that only a few
features show significant importance for prediction, and the
ranks of different features vary considerably in the case of
lower versus higher quantiles. This results in different features
being more important for the two quantiles. Figure 7 shows the
feature importance for the extreme quantiles for all the kernel
datasets combined together (left plot) and all the application
datasets combined together (right plot). In the left plot, we see
that the features avg bytes and avg stalls AO have a high rank
only when predicting at the higher quantile. On the other hand,
the feature avg stallspp is prominent in predicting at the lower
quantile and not used by the regression function optimized for
the higher quantile. In the right plot, we can observe similar
things about sum dilation AO, max inj FIFO, #links AO bytes
and avg stallspp.

We exploit these observations by selecting the most relevant
features from the models at different quantiles, and using this
subset of features to predict the execution time for different
applications. The steps involved in this proposed technique for
feature selection for a dataset are as follows:

• Create random splits of the dataset into training and
testing sets (70% for training and the rest for testing).

• Learn regression models using GBRT with quantile loss
functions at ↵ = 0.1 and ↵ = 0.9. We denote the feature
ranks in the two cases by ⌧0.1 and ⌧0.9 respectively.

• Repeat the above steps 50 times to avoid overfitting
and compute the average feature ranks for the extreme
quantiles from the 50 iterations.

• Identify the relevant features as those with either ⌧0.1
or ⌧0.9 greater than a pre-defined threshold t. In our
experiments, we fixed t at 0.1.

B. Results and discussion

We employ the feature selection technique explained above
on the following larger datasets formed by combining the
individual datasets in Table III:

1) 2D Halo (4 datasets)
2) 3D Halo (4 datasets)
3) Sub A2A (4 datasets)
4) Kernels (combination of (1), (2), and (3), 12 datasets)
5) MILC (2 datasets)
6) pF3D (2 datasets)
7) Apps (combination of (5) and (6), 4 datasets)
8) All (all 16 datasets added together)

The goal is to identify a common set of features that might
be relevant across multiple datasets. Figure 8 presents the
feature ranks obtained using the technique described above for
each of the larger datasets. Note that the importance/rank of
each feature is obtained by first identifying the smallest subset
of important features for each dataset and then performing
another cycle of training and testing to obtain the relative
importance of the features in this identified subset. The marker
colors for each row/dataset are scaled independently (maroon/
red is high and yellow is low).

Fig. 8. Comparison of the feature ranks obtained using the feature selection
technique applied to the eight larger datasets. Note that the marker colors for
each row are scaled independently (maroon/red is high and yellow is low).

Abhinav Bhatele

The causes of network congestion

16

Fig. 7. Ranks of different features obtained using GBRT with quantile loss functions at ↵ = 0.1 and ↵ = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is for a combined set of the two applications (four datasets).

average or median error for all data samples, the quantile loss
weights different regions in the function space asymmetrically
(see Figure 1). For example, in Figure 6, the lower quantile
model provides an accurate prediction for samples with low
execution times (bottom left corner), while making large errors
on samples with high execution times.

It turns out that for the datasets used in this paper, optimiz-
ing for the conditional quantiles inherently promotes sparsity
in the inferred model (Figure 7). This means that only a few
features show significant importance for prediction, and the
ranks of different features vary considerably in the case of
lower versus higher quantiles. This results in different features
being more important for the two quantiles. Figure 7 shows the
feature importance for the extreme quantiles for all the kernel
datasets combined together (left plot) and all the application
datasets combined together (right plot). In the left plot, we see
that the features avg bytes and avg stalls AO have a high rank
only when predicting at the higher quantile. On the other hand,
the feature avg stallspp is prominent in predicting at the lower
quantile and not used by the regression function optimized for
the higher quantile. In the right plot, we can observe similar
things about sum dilation AO, max inj FIFO, #links AO bytes
and avg stallspp.

We exploit these observations by selecting the most relevant
features from the models at different quantiles, and using this
subset of features to predict the execution time for different
applications. The steps involved in this proposed technique for
feature selection for a dataset are as follows:

• Create random splits of the dataset into training and
testing sets (70% for training and the rest for testing).

• Learn regression models using GBRT with quantile loss
functions at ↵ = 0.1 and ↵ = 0.9. We denote the feature
ranks in the two cases by ⌧0.1 and ⌧0.9 respectively.

• Repeat the above steps 50 times to avoid overfitting
and compute the average feature ranks for the extreme
quantiles from the 50 iterations.

• Identify the relevant features as those with either ⌧0.1
or ⌧0.9 greater than a pre-defined threshold t. In our
experiments, we fixed t at 0.1.

B. Results and discussion

We employ the feature selection technique explained above
on the following larger datasets formed by combining the
individual datasets in Table III:

1) 2D Halo (4 datasets)
2) 3D Halo (4 datasets)
3) Sub A2A (4 datasets)
4) Kernels (combination of (1), (2), and (3), 12 datasets)
5) MILC (2 datasets)
6) pF3D (2 datasets)
7) Apps (combination of (5) and (6), 4 datasets)
8) All (all 16 datasets added together)

The goal is to identify a common set of features that might
be relevant across multiple datasets. Figure 8 presents the
feature ranks obtained using the technique described above for
each of the larger datasets. Note that the importance/rank of
each feature is obtained by first identifying the smallest subset
of important features for each dataset and then performing
another cycle of training and testing to obtain the relative
importance of the features in this identified subset. The marker
colors for each row/dataset are scaled independently (maroon/
red is high and yellow is low).

Fig. 8. Comparison of the feature ranks obtained using the feature selection
technique applied to the eight larger datasets. Note that the marker colors for
each row are scaled independently (maroon/red is high and yellow is low).

Abhinav Bhatele

The causes of network congestion

16

Fig. 7. Ranks of different features obtained using GBRT with quantile loss functions at ↵ = 0.1 and ↵ = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is for a combined set of the two applications (four datasets).

average or median error for all data samples, the quantile loss
weights different regions in the function space asymmetrically
(see Figure 1). For example, in Figure 6, the lower quantile
model provides an accurate prediction for samples with low
execution times (bottom left corner), while making large errors
on samples with high execution times.

It turns out that for the datasets used in this paper, optimiz-
ing for the conditional quantiles inherently promotes sparsity
in the inferred model (Figure 7). This means that only a few
features show significant importance for prediction, and the
ranks of different features vary considerably in the case of
lower versus higher quantiles. This results in different features
being more important for the two quantiles. Figure 7 shows the
feature importance for the extreme quantiles for all the kernel
datasets combined together (left plot) and all the application
datasets combined together (right plot). In the left plot, we see
that the features avg bytes and avg stalls AO have a high rank
only when predicting at the higher quantile. On the other hand,
the feature avg stallspp is prominent in predicting at the lower
quantile and not used by the regression function optimized for
the higher quantile. In the right plot, we can observe similar
things about sum dilation AO, max inj FIFO, #links AO bytes
and avg stallspp.

We exploit these observations by selecting the most relevant
features from the models at different quantiles, and using this
subset of features to predict the execution time for different
applications. The steps involved in this proposed technique for
feature selection for a dataset are as follows:

• Create random splits of the dataset into training and
testing sets (70% for training and the rest for testing).

• Learn regression models using GBRT with quantile loss
functions at ↵ = 0.1 and ↵ = 0.9. We denote the feature
ranks in the two cases by ⌧0.1 and ⌧0.9 respectively.

• Repeat the above steps 50 times to avoid overfitting
and compute the average feature ranks for the extreme
quantiles from the 50 iterations.

• Identify the relevant features as those with either ⌧0.1
or ⌧0.9 greater than a pre-defined threshold t. In our
experiments, we fixed t at 0.1.

B. Results and discussion

We employ the feature selection technique explained above
on the following larger datasets formed by combining the
individual datasets in Table III:

1) 2D Halo (4 datasets)
2) 3D Halo (4 datasets)
3) Sub A2A (4 datasets)
4) Kernels (combination of (1), (2), and (3), 12 datasets)
5) MILC (2 datasets)
6) pF3D (2 datasets)
7) Apps (combination of (5) and (6), 4 datasets)
8) All (all 16 datasets added together)

The goal is to identify a common set of features that might
be relevant across multiple datasets. Figure 8 presents the
feature ranks obtained using the technique described above for
each of the larger datasets. Note that the importance/rank of
each feature is obtained by first identifying the smallest subset
of important features for each dataset and then performing
another cycle of training and testing to obtain the relative
importance of the features in this identified subset. The marker
colors for each row/dataset are scaled independently (maroon/
red is high and yellow is low).

Fig. 8. Comparison of the feature ranks obtained using the feature selection
technique applied to the eight larger datasets. Note that the marker colors for
each row are scaled independently (maroon/red is high and yellow is low).

Abhinav Bhatele

The causes of network congestion

17

Abhinav Bhatele

The causes of network congestion

• Average and maximum length of receive buffers

17

Abhinav Bhatele

The causes of network congestion

• Average and maximum length of receive buffers

• Average load on network links

17

Abhinav Bhatele

The causes of network congestion

• Average and maximum length of receive buffers

• Average load on network links

• Maximum length of injection FIFOs

17

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Interference from other jobs

18

1

1.5

2

2.5

3

Nov 29 Dec 13 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

R
el
at
iv
e
pe
rf
or
m
an
ce

MILC
AMG

UMT
miniVite

Performance of control jobs running the same executable and input varies as they are run from day-to-day
on 128 nodes of Cori in 2018-2019

Bhatele et al. The case of performance variability on dragonfly-based systems, IPDPS 2020

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Interference from other jobs

18

1

1.5

2

2.5

3

Nov 29 Dec 13 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

R
el
at
iv
e
pe
rf
or
m
an
ce

MILC
AMG

UMT
miniVite

Performance of control jobs running the same executable and input varies as they are run from day-to-day
on 128 nodes of Cori in 2018-2019

Bhatele et al. The case of performance variability on dragonfly-based systems, IPDPS 2020

Concurrently running jobs can
contend for shared resources:

network, filesystem

Abhinav Bhatele

Data analytics study to understand variability

• Primarily focus on variability arising from sub-optimal communication on the network

• Set up controlled experiments on a dragonfly-based Cray system:

• Submit jobs of the same applications periodically in the batch queue for ~4 months

• Collect network hardware counters per iteration for each job and other data
described later

• Use machine learning to analyze the gathered performance data

19

Abhinav Bhatele

Run four applications in control jobs

• Gather network hardware counters on Aries routers connected to my jobs’ nodes

• Hardware counters and execution time recorded per iteration

20

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SC ’19, November 17–22, 2019, Denver, CO

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

variation causes several problems beyond the obvious waste of
valuable supercomputer time. For example, studying performance
implications of program optimizations is complicated by variance.
From the perspective of end users, system administrators, and the
resource manager, it also complicates estimating the time required
for batch jobs and allocation requests for proposals.

One oft-discussed form of variance, especially in high perfor-
mance computing, is operating system (OS) noise [29]. With OS
noise, a system daemon interrupts at least one core on the system
to do its work. From the point of view of the application program,
the interrupt time acts as extra computation time. This can have
especially negative e�ects downstream in programs that synchro-
nize at a �ne granularity [16, 19]. Several researchers have studied
OS noise empirically and in many cases o�ered solutions (e.g., low-
noise operating systems [26]) to reduce or eliminate its e�ects.

However, even in the absence of OS noise, there can be other
contributors to performance variability on a supercomputer. For
example, on most systems, the I/O subsystem is shared, and if two
or more jobs access it simultaneously, degraded I/O performance
can result. Another example is shared memory [18] accessed over
RDMA. In this paper, we primarily focus on the e�ects of the in-
terconnection network, which means that application performance
varies because of contention from other jobs using the shared net-
work infrastructure. In order to guarantee high system utilization,
on most HPC systems MPI and I/O tra�c from all running jobs
share the same network resources. In such scenarios, communica-
tion and overall performance of communication-sensitive jobs can
su�er due to inter-job interference. This is the focus of the work
presented in this paper.

3 DATA COLLECTION
In this section, we describe the applications used in the controlled
experiments on Cori along with their computation and communica-
tion behavior. In Section 3.3, we present all the sources from which
data was gathered for data analytics.

3.1 Application Codes and Inputs
We ran four application codes that are representative of di�erent
HPC workloads commonly run at NSF and DOE centers:

AMG: The AMG proxy application is a parallel algebraic multigrid
solver for linear systems arising from problems on unstructured
grids. It is based on code in the Hypre linear solver library [15].
The input problem we ran in our experiments simulates a time-
dependent loop with AMG-GMRES on a linear system built for a
three-dimensional (3D) problem. The problem size per MPI process
is 32 ⇥ 32 ⇥ 32 (see Table: 1).

MILC: MILC stands for MIMD Lattice Computation and is used
to study quantum chromodynamics using numerical simulations [4].
We use theMILC application, su3_rmd, which does the same amount
of computation and communication in every time step (after a
warmup phase). MILC performs a 4D Stencil on a per process grid
of dimensions 4 ⇥ 4 ⇥ 4 ⇥ 4 per node.

miniVite: miniVite is a proxy for the production application, Vite.
It performs a single phase of the Louvain classi�cation for commu-
nity detection in large distributed graphs. This is representative of

Table 1: Application versions and their inputs

Application No. of nodes Input Parameters

AMG 1.1 128 -P 32 16 16 -n 32 32 32 -problem 2
AMG 1.1 512 -P 32 32 32 -n 32 32 32 -problem 2
MILC 7.8.0 128 n128_large.in
MILC 7.8.0 512 n512_large.in
miniVite 1.0 128 -f nlpkkt240.bin -t 1E-02 -i 6
UMT 2.0 128 custom_8k.cmg 4 2 4 4 4 0.04

new graph analytics workloads starting to run on HPC platforms.
For this paper, we added another iterative loop in order to run the
same computation and communication repeatedly. We use a real
world graph called nlpkkt240, which has ⇠28 million vertices and
⇠373 million edges.

UMT: This is a discrete ordinates (Sn) code for multigroup deter-
ministic, non-linear, radiation transport [28] over 3D unstructured
spatial domains. The code allows user control over the the number
of energy groups and that of angles used in the discretization. This
class of problems is characterized by tens of thousands of unknowns
per zone and upwards of millions of zones.

The experimental data for the paper was gathered by running
each of the application codes almost every day (sometimes multiple
jobs in a day) on Cori between December 2018 and April 2019. AMG
and MILC were run on 128 and 512 nodes each because of their
better scaling behavior, and miniVite and UMT were run on 128
nodes only. We used 64 out of 68 cores on each KNL node. The
inputs used for these runs are summarized in Table 1. Each row in
the table is considered an independent dataset with somewhere in
between 175 and 225 runs in each dataset. Each application was
run for a di�erent number of time steps to limit the total execution
time per job to less than ten minutes.

3.2 Application Characterization
In each execution of the applications, we collect MPI pro�les using
mpiP [34] to understand the time spent in computation and com-
munication and to identify the dominant MPI routines with regards
to performance.

AMG: The �rst observable pattern, which happens to be true across
all the applications, is that there is a mean time step behavior for
each application and node count. Di�erent runs of an application
deviate from this mean behavior to di�erent degrees, but the mean
behavior is still discernible. AMG runs for 20 time steps, and the
mean time per step is shown in Figure 3 (left). AMG on 128 nodes
performs better than on 512 nodes (we are using weak scaling)
but the overall time per step trends are similar. Figure 4 shows the
time spent in computation and communication on the two node
counts and how the time spent in communication is split between
di�erent MPI routines. The error bars on MPI time represent the
slowest and fastest execution of AMG. We do not see a signi�cant
variation in compute time, which suggests the lack of OS noise. On
the other hand, the time spent in MPI varies signi�cantly, which
causes overall performance variability. On average, AMG spends 76
and 82% of the total time in MPI on 128 and 512 nodes, respectively.

3

Si
x

da
ta

se
ts

Abhinav Bhatele

Other sources of data for analytics

• Job queue logs

• Information about jobs running concurrently with a specific control job

• Job placement

• Number of unique groups and routers to which a control job is assigned

• System-wide counters for all Aries routers gathered using LDMS

• All routers: all routers connected to compute or I/O nodes

• I/O routers: only routers connected to I/O servers

21

Abhinav Bhatele

Analysis I: Identifying predictors of deviation

• Execution times and network counters data are available for each iteration of the
application

• Each iteration is treated as an independent sample

• We create models to predict the deviation of the execution time instead of the
absolute time

• We use gradient boosted regression to generate a predictive model and recursive
feature elimination (RFE) to study feature importances

22

Abhinav Bhatele

Figure 8. Mean absolute percentage error of the forecasting model for different m and k for the AMG 128 node (left) and 512 node (right) datasets.

Figure 9. Relevance scores of each counter in predicting the deviation from
mean behavior for the different datasets.

The mean absolute percentage error (MAPE) made by the
prediction models was less than 5% for all the datasets. This
analysis helps us identify, for different applications, which
network hardware performance counters are most relevant in
predicting deviation from the mean behavior. This motivates the
possibility of using these features to forecast future performance
based on past behavior. Additionally, because monitoring and
analyzing hundreds of counters in real time has high overheads,
the results of such analysis can help identify the critical counters
that should be used by job schedulers in deciding when and
where to schedule pending jobs.

C. Forecasting Execution Time

We now analyze the accuracy of the forecaster developed
in Section IV-C in predicting the execution time of k future
time steps using counter data from m previous time steps. So
far we only considered network counters for routers directly
attached to our jobs’ nodes as input features. We now consider
additional data to include features that contain information
about the job placement and other routers on the system:

• placement: These features (NUM_ROUTERS and
NUM_GROUPS) depend on the placement of the job and
indicate the degree of fragmentation of the job.

• io: LDMS collects four counters in Table II. The “io”
features refer to data collected by LDMS from I/O nodes
on Cori that connect to the filesystem. These counters
give an indication of the filesystem traffic on the network.

• sys: These are also derived from LDMS data gathered
from all routers on the system that have no nodes in
common with those allocated to our job. Values of these
counters give an indication of the traffic on other routers
of the system.

We create multiple independent models for different values
of m and k, where m is kept small relative to the total number
of time steps so that we have enough samples in the training set.

The value of k is set to 25% and 50% of the total number of
time steps in order to assess the ability to predict up to half of
the execution period of a job. Based on these considerations, we
choose m = {3, 8}, k = {5, 10} for AMG, and m = {10, 20}
and k = {20, 40} for MILC. Note that the absolute execution
time of time steps in AMG is much greater than those in
MILC. So, even though we use larger values of m in the case
of MILC, the temporal context used for modeling in terms
of the absolute time is similar to that of AMG. We did not
perform forecasting for miniVite and UMT because they ran
for six and seven time steps respectively, which was not long
enough to create reasonable models.

Figure 8 shows the MAPE for the different forecasting
models created for the two AMG datasets. We observe that
a longer temporal context (larger m) lowers the MAPE
significantly. In addition, larger values of k allow bursty
performance changes per time step to be amortized, and so
predictions improve as k increases. We see similar trends for
the 128 and 512 node datasets. The 512 node datasets have
slightly higher errors, possibly because of the larger variation
in performance at that scale. We do not use the io and sys
features for AMG because they lead to overfitting. We do
not see a significant improvement in forecasting by adding
placement features.

Figure 10 shows the MAPE for the different forecasting
models created for the two MILC datasets. In this case, we use
the placement as well as io and sys features. The observations
from the AMG forecasting models for different values of m

and k still hold true. The largest difference from the AMG
forecasting models is that for MILC, adding io and sys features
successively lowers the errors and makes the forecasting much
better. We believe that this is because MILC is bandwidth-
bound, and increased I/O and MPI traffic on the system impacts
its performance more than AMG. This suggests that in addition
to a job’s own routers, traffic on other routers of the system
can also impact its performance.

Next, we look at feature importances derived from the
forecasting models. Note that as opposed to the previous section
where the goal was to predict the deviations in performance,
the forecasting models are trying to predict the absolute
performance. Also, in the case of MILC, we are now using a
much larger set of input features. Figure 11 shows the feature
importances in the case of AMG and MILC for the largest m
and k considered in each case. We observe that in the case of
AMG (left plot), PT_RB_STL_RQ is no longer relevant and
PT_RB_STL_RS now has high relevance for AMG 512 nodes.

Results: Identifying predictors of deviation

23

Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.

Abhinav Bhatele

Figure 8. Mean absolute percentage error of the forecasting model for different m and k for the AMG 128 node (left) and 512 node (right) datasets.

Figure 9. Relevance scores of each counter in predicting the deviation from
mean behavior for the different datasets.

The mean absolute percentage error (MAPE) made by the
prediction models was less than 5% for all the datasets. This
analysis helps us identify, for different applications, which
network hardware performance counters are most relevant in
predicting deviation from the mean behavior. This motivates the
possibility of using these features to forecast future performance
based on past behavior. Additionally, because monitoring and
analyzing hundreds of counters in real time has high overheads,
the results of such analysis can help identify the critical counters
that should be used by job schedulers in deciding when and
where to schedule pending jobs.

C. Forecasting Execution Time

We now analyze the accuracy of the forecaster developed
in Section IV-C in predicting the execution time of k future
time steps using counter data from m previous time steps. So
far we only considered network counters for routers directly
attached to our jobs’ nodes as input features. We now consider
additional data to include features that contain information
about the job placement and other routers on the system:

• placement: These features (NUM_ROUTERS and
NUM_GROUPS) depend on the placement of the job and
indicate the degree of fragmentation of the job.

• io: LDMS collects four counters in Table II. The “io”
features refer to data collected by LDMS from I/O nodes
on Cori that connect to the filesystem. These counters
give an indication of the filesystem traffic on the network.

• sys: These are also derived from LDMS data gathered
from all routers on the system that have no nodes in
common with those allocated to our job. Values of these
counters give an indication of the traffic on other routers
of the system.

We create multiple independent models for different values
of m and k, where m is kept small relative to the total number
of time steps so that we have enough samples in the training set.

The value of k is set to 25% and 50% of the total number of
time steps in order to assess the ability to predict up to half of
the execution period of a job. Based on these considerations, we
choose m = {3, 8}, k = {5, 10} for AMG, and m = {10, 20}
and k = {20, 40} for MILC. Note that the absolute execution
time of time steps in AMG is much greater than those in
MILC. So, even though we use larger values of m in the case
of MILC, the temporal context used for modeling in terms
of the absolute time is similar to that of AMG. We did not
perform forecasting for miniVite and UMT because they ran
for six and seven time steps respectively, which was not long
enough to create reasonable models.

Figure 8 shows the MAPE for the different forecasting
models created for the two AMG datasets. We observe that
a longer temporal context (larger m) lowers the MAPE
significantly. In addition, larger values of k allow bursty
performance changes per time step to be amortized, and so
predictions improve as k increases. We see similar trends for
the 128 and 512 node datasets. The 512 node datasets have
slightly higher errors, possibly because of the larger variation
in performance at that scale. We do not use the io and sys
features for AMG because they lead to overfitting. We do
not see a significant improvement in forecasting by adding
placement features.

Figure 10 shows the MAPE for the different forecasting
models created for the two MILC datasets. In this case, we use
the placement as well as io and sys features. The observations
from the AMG forecasting models for different values of m

and k still hold true. The largest difference from the AMG
forecasting models is that for MILC, adding io and sys features
successively lowers the errors and makes the forecasting much
better. We believe that this is because MILC is bandwidth-
bound, and increased I/O and MPI traffic on the system impacts
its performance more than AMG. This suggests that in addition
to a job’s own routers, traffic on other routers of the system
can also impact its performance.

Next, we look at feature importances derived from the
forecasting models. Note that as opposed to the previous section
where the goal was to predict the deviations in performance,
the forecasting models are trying to predict the absolute
performance. Also, in the case of MILC, we are now using a
much larger set of input features. Figure 11 shows the feature
importances in the case of AMG and MILC for the largest m
and k considered in each case. We observe that in the case of
AMG (left plot), PT_RB_STL_RQ is no longer relevant and
PT_RB_STL_RS now has high relevance for AMG 512 nodes.

Results: Identifying predictors of deviation

23

Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.

Network switch congestion
important for some apps while

end-point congestion more
important for others

Abhinav Bhatele

Analysis II: Forecasting within-run variation

• Idea is to predict next k time steps based on
knowledge of m previous time steps

• Use a sliding window approach to create the
training set

• We use the popular scalar dot-product
attention model along with a fully connected
neural network

• We explore using different groups of
features to understand the impact on model
accuracy

24

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SC ’19, November 17–22, 2019, Denver, CO

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

a given predictive model F , the forecasting problem is formulated
as follows. We denote the set of input features (from hardware
counters) x(t) at step t , and then the forecasting problem is to
predict �ktot , the sum of execution times of the next k steps:

�
k
tot = P ©≠

´
m’
j=0

x(t � j)™Æ
¨
, (1)

where �ktot =
t+k’
l=t+1

�l . (2)

This formulation contains 2 free parameters: m, the number of
historical steps that we consider for making predictions, and k ,
the number of steps that we are predicting. Figure 7 illustrates
this formulation. For generating the training data, we use a sliding
window based approach and change t betweenm untilT �k , where
T is the maximum number of steps in each application run. We use
Gradient Boosted Trees to build the model F in all our experiments,
and it is trained using 5-fold cross validation. We use mean squared
error between the predicted and the actual value as the training
loss. Finally, we report the mean absolute percentage error (MAPE)
in prediction across all our cross validation splits. We �nd that such
a predictive model is highly generalizable, in that it can be used to
predict across very long time frames even if we have used relatively
shorter runs during training.

Temporal Context (m)

Looking Ahead (k)

Current Sample

Figure 7: Illustration of the formulation for performance
forecasting using di�erent sources of system and IO data.

In order to understand how the forecasting capability varies, we
conduct several ablation studies. First, we vary the temporal context
used for prediction (m), and how far into the future we can predict
(k). Then, we study how the prediction performance varies when
we include information about the job placement (NUM_GROUPS
and NUM_ROUTERS) and additional hardware counters from I/O
and System (correspond to other jobs without including ours).

5 FINDINGS
In this section, we apply the proposed machine learning method-
ologies to analyze the experimental data.

5.1 Neighborhood Analysis and Assigning
Responsibility

Following the analysis pipeline in the previous section, we begin
with a coarse-grain analysis of performance variability in each
dataset. For this analysis, for each job in a dataset, we create a list
of users that had running jobs during the entire duration of our job
(we de�ne this as the “neighborhood” for a job). We only consider
a user if their job size is larger than a certain number of nodes (128
for the analysis in this paper). These per-job lists give us an idea of
the largest jobs running on the system alongside our job. We then
quantify the dependency between optimality of jobs in each dataset
and the “quali�ed” user names. Table 3 presents the list of users
that had high mutual information and appear in more than one list
across the six datasets. Note that the actual user names have been
anonymized.

Table 3: Sets of highly correlated users (w.r.t. performance
optimality) for the di�erent datasets

Application No. of nodes Highly correlated users

AMG 128 User-[1, 2, 3, 4, 5, 6, 7, 8, 9]
AMG 512 User-[2, 3, 7, 9, 10, 11, 12]
MILC 128 User-[2, 8, 9, 11, 13, 14]
MILC 512 User-[8, 10, 11, 14]
miniVite 128 User-[2, 4, 5, 8, 12, 13]
UMT 128 User-[1, 6, 11]

We observe that some users appear in multiple rows of the table
above. Users 2, 8 and 11 appear in four lists as being highly cor-
related with optimality. What this signi�es is that if one of these
users is running a job on the system, there is a good chance that
one of our jobs will slow down. User 9 shows up in three lists, and
the other users show up in two lists each. User 8 happens to be
an author on this paper who submitted all of our jobs; in other
words, two di�erent jobs that we submit can interfere with each
other. We know that MILC is communication-heavy and can create
congestion on the network.

Surprisingly, all jobs of each of the users in the table had the
same or very similar job names, and we were able to identify the
applications being run by these users in some cases. User 2 ran
HipMer, which is a Genome Assembly code that is both communi-
cation intensive and performs signi�cant �lesystem I/O. User 11’s
jobs were doing climate modeling using the Energy Exascale Earth
System Model (E3SM) code. User 9 was running a particle mesh
N-body solver, FastPM, which invokes All_Reduce many times and
also uses burst bu�ers for I/O. Many other users (6, 10 and 14) run
material science simulations. These applications are also known to
send signi�cant MPI and/or I/O tra�c on the network. Hence there
is great likelihood that these jobs can impact the performance of
other jobs.

7

Abhinav Bhatele

Results: Forecasting within-run variation

25

0
2
4
6
8
10
12

m=10 m=30 m=10 m=30

M
A
PE

k=40k=20

0
2
4
6
8
10
12

m=10 m=30 m=10 m=30

app
app + placement

app + placement + io
app + placement + io + sys

k=40k=20

MAPE = Mean Absolute Percentage Error, m = temporal context, k = predicting future time steps

MILC (128 nodes)

Abhinav Bhatele

Results: Forecasting within-run variation

25

0
2
4
6
8
10
12

m=10 m=30 m=10 m=30

M
A
PE

k=40k=20

0
2
4
6
8
10
12

m=10 m=30 m=10 m=30

app
app + placement

app + placement + io
app + placement + io + sys

k=40k=20

MAPE = Mean Absolute Percentage Error, m = temporal context, k = predicting future time steps

MILC (128 nodes)

0

100

200

300

400

500

600

0 100 200 300 400 500 600

T
im
e
pe
r
40
st
ep
s
(s
)

Step

Observed
Predicted

Abhinav Bhatele

Analysis III: Using only system data

• Use system state before a job starts running to predict performance

• No application-specific features are used

• Train a 2-layer neural network that combines multiple datasets

• Goal: develop application-agnostic models

26

4

TABLE 2
Description of derived counters used for modeling. Colors in the left column map derived features to raw features in Table 1.

Derived counter name Abbreviation Description

AR_RTR_INQ_PRF_INCOMING_FLIT_REQ RT_FLIT_REQ Total number of request flits received on a router tile
AR_RTR_INQ_PRF_INCOMING_FLIT_RSP RT_FLIT_RSP Total number of response flits received on a router tile
AR_RTR_INQ_PRF_INCOMING_PKT_REQ RT_PKT_REQ Total number of cycles requests stalled on a router tile
AR_RTR_INQ_PRF_INCOMING_PKT_RSP RT_PKT_RSP Total number of cycles responses stalled on a router tile

AR_RTR_INQ_PRF_INCOMING_FLIT_ROW RT_FLIT_ROW Total number of flits received on all row links of a router
AR_RTR_INQ_PRF_INCOMING_FLIT_COL RT_FLIT_COL Total number of flits received on all column links of a router
AR_RTR_INQ_PRF_INCOMING_FLIT_GBL RT_FLIT_GBL Total number of flits received on all global links of a router
AR_RTR_INQ_PRF_ROWBUS_STALL_ROW RT_STL_ROW Total number of stalls on all row links of a router
AR_RTR_INQ_PRF_ROWBUS_STALL_COL RT_STL_COL Total number of stalls on all column links of a router
AR_RTR_INQ_PRF_ROWBUS_STALL_GBL RT_STL_GBL Total number of stalls on all global links of a router

AR_NL_PRF_REQ_FLITS PT_FLIT_REQ Total number of NIC request flits on a processor tile
AR_NL_PRF_RSP_FLITS PT_FLIT_RSP Total number of NIC response flits on a processor tile
AR_NL_PRF_REQ_STALLED PT_STL_REQ Total number of cycles requests stalled on a processor tile
AR_NL_PRF_RSP_STALLED PT_STL_RSP Total number of cycles responses stalled on a processor tile

last five minutes prior to the start time of a job (see Figure 3).
For each job, this gives us a large table of the previously
identified network counters and the change in their values
in the last five minutes. This data is for each router and
network tile on the system. Next, we further processing this
data by aggregating it in meaningful ways.

LDMS gathers
data every second

5 mins prior
to job

Control Job ‘x’

Fig. 3. LDMS data five minutes prior to job start is used as input to train
the machine learning models.

3.2 Reduction in Data Dimensionality
The resulting subset extracted from the longitudinal data is
still extremely high-dimensional because of counter values
being per network tile (port) and per router. We perform
aggregations of this data along different axes to get the data
in final form:

Reducing Tile Data: We begin by performing reductions
across each individual router. Each 48-port Aries router
contains 40 router ports that connect to other routers and
the remaining eight ports connect to the compute nodes on
that router. The aggregation across all router tiles yields the
17 (2 * 8 VCs + row bus stalls) raw counters that constitute
the top section of Table 1. A similar reduction across all the
processor tiles yields the bottom section of Table 1. After this
reduction, we are left with 17 + 8 = 25 raw features across
all 2890 routers for each job run in our dataset.

Creating Interpretable Derived Features: Next, we
perform a sum over the reduced raw counters to
create a set of human interpretable derived features
(Table 2). For example, incoming flits on virtual
channels 0–3 (AR_RTR_INQ_PRF_INCOMING_FLIT_VCv,

v=0,1,2,3) of a router tile are added together to
create the AR_RTR_INQ_PRF_INCOMING_FLIT_REQ

feature. Incoming flits on virtual channels 4–
7 (AR_RTR_INQ_PRF_INCOMING_FLIT_VCv,
v = 4, 5, 6, 7) of a router tile are added together to
create the AR_RTR_INQ_PRF_INCOMING_FLIT_RSP

feature (top section of Table 2) . Similarly
AR_NL_PRF_REQ_NIC_n_TO_PTILES_FLITS and
AR_NL_PRF_REQ_PTILES_TO_NIC_n_FLITS for a
processor tile are summed together to create the
AR_NL_PRF_REQ_FLITS feature (bottom section of
Table 2). The colors in Table 1 and 2 provide a mapping
between the raw and derived features. The middle section
of Table 2 represents another way of looking at the counters
data. Instead of reducing counters over all router tiles,
we reduce the flit and stall counters by the type of link
(row, column, or global). This creates the six features in the
middle section of Table 2. These different derivations yield
14 derived features for each of the 2890 routers.

Filtering by Router Type: Nodes with different functional-
ity such as compute nodes, I/O servers, management and
login nodes are attached to different routers. We can either
consider all routers or filter by the types of nodes attached
to a router. We explored the following groupings, some of
which only consider a subset of routers: routers connected
to compute nodes (henceforth referred to as all routers),
routers attached to nodes that are assigned to the control
job (henceforth referred to as my routers), routers that are
connected to I/O servers (IO routers), etc. We ultimately
chose to feature the results from analyzing data from all
routers connected to compute nodes, routers connected to
I/O servers and the subset of routers that are attached to
nodes assigned to a particular job (my routers). These two
groupings yielded the strongest results and are solutions
that could be implemented by system administrators and
individual users respectively.

Aggregating over Routers: Once a subset of routers has
been selected in accordance to one of the above groupings,
we explored various aggregation schemes to aggregate the
data across routers for either set of input features (raw or
derived). This aggregation calculates one value for each

Abhinav Bhatele

Results: Predicting perf. of unseen jobs

27

8

Fig. 7. Relative importances of the most important counters obtained using RFE for different datasets (router type: compute routers).

0

2

4

6

8

10

AMG 128 AMG 512 MILC 128 MILC 512M
ea
n
A
bs
ol
ut
e
Pe
rc
en
ta
ge
Er
ro
r

Testing dataset

MAPE comparison for application-agnostic models

All routers
My routers

0

5

10

15

20

AMG 128 AMG 512 MILC 128 MILC 512

%
Sa
m
pl
es
w
ith
La
rg
e
Er
ro
r

Testing dataset

PSLE comparison for application-agnostic models

Fig. 8. MAPE and PSLE scores for the NN model when using three datasets for training and a fourth disjoint dataset for testing (x-axis label.) The
training dataset for each cluster is the combination of AMG 128, AMG 512, MILC 128, MILC 512 minus the dataset in the x-axis label.

on router tiles), RT_STL_GBL (stalls on global links), and
PT_FLIT_REQ (processor tile flits). We also observe that
certain features might be more important for the My routers
dataset versus the All routers dataset and vice versa. For
example, RT_FLIT_REQ and PT_STL_RSP (processor tile
stalls) are more important when using All routers, while
RT_PKT_RSP is more important with the My routers data.

5.3 Application-agnostic Models
Finally, we analyze the generalizability of the ML algorithms
and their prediction models. The end goal is to train a
single model that can accurately predict the standardized
runtime for any application even if we do not have data
for that application in the training dataset. In the first study
of generalizability, we use four datasets – AMG 128, AMG
512, MILC 128, and MILC 512. In turns, we use three of
these datasets for training and reserve the fourth dataset
entirely for testing. We segment the training data into 8-fold
cross-validation segments and train a model that can predict
the standardized runtime of any job in the testing set given
the previous five minutes of system data. Each prediction
is later de-normalized with respect to its application and
an error metric is calculated for that prediction. For all the
results in this section, we use the neural network model,
apply the mean function to aggregate the data, and compare
using the All routers versus My routers data in each case.

Figure 8 shows the success of the trained models in terms
of their MAPE and PSLE scores. Comparing with Figure 6,
we observe that when multiple datasets are combined for
training, the models perform better in terms of predicting
the execution times, compared to training on a portion of the
individual datasets by themselves. The MAPE for predicting

AMG 128 reduces from 4.23 to 3.61 and that for AMG 512
from 4.71 to 4.25. Similarly the MAPE for predicting MILC
512 reduces from 8.21 when used by itself for training to 7.5
when the other three datasets are combined for training a
model. This improvement is likely due to the larger train-
ing dataset (⇠450 samples versus ⇠150) allowing for more
robust training of models. We see this as a promising sign
for future models which could include tens of applications
with hundreds of samples each and likely even stronger
and more generalizable predictions. We also observe that
using the data from only the routers allocated to a job does
not degrade the models significantly. This suggests that in
absence of system-wide data, an end user can work with
data from the routers that they have access to in their jobs.

In the second study of generalizability, we combine
datasets by application type and reserve one of the ap-
plications as unseen data for testing. For example, when
we combine all AMG and MILC datasets for training,
we use the miniVite dataset for testing. Figure 9 shows
how these application-agnostic models perform in terms
of predicting the performance of an unseen application.
We observe that AMG has the lowest errors, followed by
MILC and then miniVite. On average, AMG has the lowest
percentage of communication with respect to its total ex-
ecution tine, followed by MILC, and then miniVite. AMG
has the lowest performance variability and miniVite the
highest. We believe that this is the reason for the models
having better success with predicting AMG’s performance
as opposed to that of MILC and miniVite. Nevertheless,
the results are still encouraging. Even without any data for
an application being included for training, the ML models
demonstrate reasonable success in performance prediction.

Abhinav Bhatele

Results: Predicting perf. of unseen jobs

27

Ian Costello et al. Analytics of Longitudinal System Monitoring Data for Performance Prediction. https://arxiv.org/abs/2007.03451

Based on global routers

8

Fig. 7. Relative importances of the most important counters obtained using RFE for different datasets (router type: compute routers).

0

2

4

6

8

10

AMG 128 AMG 512 MILC 128 MILC 512M
ea
n
A
bs
ol
ut
e
Pe
rc
en
ta
ge
Er
ro
r

Testing dataset

MAPE comparison for application-agnostic models

All routers
My routers

0

5

10

15

20

AMG 128 AMG 512 MILC 128 MILC 512

%
Sa
m
pl
es
w
ith
La
rg
e
Er
ro
r

Testing dataset

PSLE comparison for application-agnostic models

Fig. 8. MAPE and PSLE scores for the NN model when using three datasets for training and a fourth disjoint dataset for testing (x-axis label.) The
training dataset for each cluster is the combination of AMG 128, AMG 512, MILC 128, MILC 512 minus the dataset in the x-axis label.

on router tiles), RT_STL_GBL (stalls on global links), and
PT_FLIT_REQ (processor tile flits). We also observe that
certain features might be more important for the My routers
dataset versus the All routers dataset and vice versa. For
example, RT_FLIT_REQ and PT_STL_RSP (processor tile
stalls) are more important when using All routers, while
RT_PKT_RSP is more important with the My routers data.

5.3 Application-agnostic Models
Finally, we analyze the generalizability of the ML algorithms
and their prediction models. The end goal is to train a
single model that can accurately predict the standardized
runtime for any application even if we do not have data
for that application in the training dataset. In the first study
of generalizability, we use four datasets – AMG 128, AMG
512, MILC 128, and MILC 512. In turns, we use three of
these datasets for training and reserve the fourth dataset
entirely for testing. We segment the training data into 8-fold
cross-validation segments and train a model that can predict
the standardized runtime of any job in the testing set given
the previous five minutes of system data. Each prediction
is later de-normalized with respect to its application and
an error metric is calculated for that prediction. For all the
results in this section, we use the neural network model,
apply the mean function to aggregate the data, and compare
using the All routers versus My routers data in each case.

Figure 8 shows the success of the trained models in terms
of their MAPE and PSLE scores. Comparing with Figure 6,
we observe that when multiple datasets are combined for
training, the models perform better in terms of predicting
the execution times, compared to training on a portion of the
individual datasets by themselves. The MAPE for predicting

AMG 128 reduces from 4.23 to 3.61 and that for AMG 512
from 4.71 to 4.25. Similarly the MAPE for predicting MILC
512 reduces from 8.21 when used by itself for training to 7.5
when the other three datasets are combined for training a
model. This improvement is likely due to the larger train-
ing dataset (⇠450 samples versus ⇠150) allowing for more
robust training of models. We see this as a promising sign
for future models which could include tens of applications
with hundreds of samples each and likely even stronger
and more generalizable predictions. We also observe that
using the data from only the routers allocated to a job does
not degrade the models significantly. This suggests that in
absence of system-wide data, an end user can work with
data from the routers that they have access to in their jobs.

In the second study of generalizability, we combine
datasets by application type and reserve one of the ap-
plications as unseen data for testing. For example, when
we combine all AMG and MILC datasets for training,
we use the miniVite dataset for testing. Figure 9 shows
how these application-agnostic models perform in terms
of predicting the performance of an unseen application.
We observe that AMG has the lowest errors, followed by
MILC and then miniVite. On average, AMG has the lowest
percentage of communication with respect to its total ex-
ecution tine, followed by MILC, and then miniVite. AMG
has the lowest performance variability and miniVite the
highest. We believe that this is the reason for the models
having better success with predicting AMG’s performance
as opposed to that of MILC and miniVite. Nevertheless,
the results are still encouraging. Even without any data for
an application being included for training, the ML models
demonstrate reasonable success in performance prediction.

9

Fig. 9. MAPE and PSLE scores for the NN model when combining datasets by application type. Two applications are used for training and the third
application is used for testing (x-axis label.)

We expect that as we add more applications with different
computation and communication signatures to our training
dataset, the prediction scores for other unseen applications
will improve.

Finally, we analyze feature importances when training
the neural network model using the combined datasets.
Figure 10 shows the relative feature importances for three
different training datasets (AMG+MILC, AMG+miniVite,
and MILC+miniVite), and two filterings (All routers and
My routers). Surprisingly, NUM_GROUPS emerges as a highly
important feature. In principle, one would expect that the
placement of a job should have little impact on its perfor-
mance due to adaptive indirect (UGAL) routing [6]. How-
ever, in practice, it is possible that when a job is spread over
more groups, the likelihood of encountering congestion on
global links increases. RT_STL_GBL (stalls on global links)
is also important for predicting all three applications as
we had observed in the previous plots. We also observe
that while applications share common important features,
some features are only important for certain datasets. We
notice that PT_STL_REQ (processor request stalls) is more
important when training using the AMG+miniVite dataset.
A feature that is important when filtering by My routers but
not All routers is RT_STL_COL (stalls on black links). On
the other hand, RT_FLIT_REQ (router tile flits on request
channels) is important when filtering by All routers. In the
next section, we show how we can use a small set of these
”significant counters” to assist the job scheduler in making
intelligent scheduling decisions.

Fig. 10. Relative importances of the most important counters obtained
using RFE for different router groups in the application-agnostic model.

6 INFLUENCING JOB SCHEDULING DECISIONS

In this section, we show how the findings in this paper
could be used by a job scheduler or HPC user for labeling
incoming jobs in the queue as likely to run relatively fast or
slow. The hypothesis is that by selecting a small number of
features (network counters) based on feature importances,
and analyzing their values when a new job is ready to be
scheduled, the job scheduler can quickly determine if the
job will run slow or fast. If this turns out to be true, a
job scheduler can decide to monitor certain features con-
tinuously, based on feature importances derived from the
application-agnostic models in Section 5.3.

We selected the three most important features from
the application-agnostic models in Figure 10: NUM_GROUPS,
RT_STL_GBL, and RT_STL_COL. We classify samples (jobs)
in three of our datasets (AMG 512, MILC 512, and miniVite
128) as “likely fast” or ”likely slow” based on whether the
system-wide values of these three counters were below the
median or above the median respectively, in the five minutes
prior to that job running. Once the jobs in a dataset have
been classified into likely fast or slow based on the values
of the selected network counters, we analyze their actual
execution times to see if our classification is statistically
significant.

Fig. 11. Distribution of actual runtimes of likely fast versus slow jobs
of AMG when considering above median values of three features:
RT STL COL, RT STL GBL, and NUM GROUPS

https://arxiv.org/abs/2007.03451
https://arxiv.org/abs/2007.03451

Abhinav Bhatele

Results: Potential impact on job schedulers

28

• Classify jobs into likely fast or likely slow based on values of three most important
features

• Based on whether values of these features are above or below the median

9

Fig. 9. MAPE and PSLE scores for the NN model when combining datasets by application type. Two applications are used for training and the third
application is used for testing (x-axis label.)

We expect that as we add more applications with different
computation and communication signatures to our training
dataset, the prediction scores for other unseen applications
will improve.

Finally, we analyze feature importances when training
the neural network model using the combined datasets.
Figure 10 shows the relative feature importances for three
different training datasets (AMG+MILC, AMG+miniVite,
and MILC+miniVite), and two filterings (All routers and
My routers). Surprisingly, NUM_GROUPS emerges as a highly
important feature. In principle, one would expect that the
placement of a job should have little impact on its perfor-
mance due to adaptive indirect (UGAL) routing [6]. How-
ever, in practice, it is possible that when a job is spread over
more groups, the likelihood of encountering congestion on
global links increases. RT_STL_GBL (stalls on global links)
is also important for predicting all three applications as
we had observed in the previous plots. We also observe
that while applications share common important features,
some features are only important for certain datasets. We
notice that PT_STL_REQ (processor request stalls) is more
important when training using the AMG+miniVite dataset.
A feature that is important when filtering by My routers but
not All routers is RT_STL_COL (stalls on black links). On
the other hand, RT_FLIT_REQ (router tile flits on request
channels) is important when filtering by All routers. In the
next section, we show how we can use a small set of these
”significant counters” to assist the job scheduler in making
intelligent scheduling decisions.

Fig. 10. Relative importances of the most important counters obtained
using RFE for different router groups in the application-agnostic model.

6 INFLUENCING JOB SCHEDULING DECISIONS

In this section, we show how the findings in this paper
could be used by a job scheduler or HPC user for labeling
incoming jobs in the queue as likely to run relatively fast or
slow. The hypothesis is that by selecting a small number of
features (network counters) based on feature importances,
and analyzing their values when a new job is ready to be
scheduled, the job scheduler can quickly determine if the
job will run slow or fast. If this turns out to be true, a
job scheduler can decide to monitor certain features con-
tinuously, based on feature importances derived from the
application-agnostic models in Section 5.3.

We selected the three most important features from
the application-agnostic models in Figure 10: NUM_GROUPS,
RT_STL_GBL, and RT_STL_COL. We classify samples (jobs)
in three of our datasets (AMG 512, MILC 512, and miniVite
128) as “likely fast” or ”likely slow” based on whether the
system-wide values of these three counters were below the
median or above the median respectively, in the five minutes
prior to that job running. Once the jobs in a dataset have
been classified into likely fast or slow based on the values
of the selected network counters, we analyze their actual
execution times to see if our classification is statistically
significant.

0

2

4

6

8

10

34
6-
35
4

35
4-
36
3

36
3-
37
2

37
2-
38
0

38
0-
38
9

38
9-
39
8

39
8-
40
6

40
6-
41
5

41
5-
42
4

42
4-
43
2

43
2-
44
1

44
1-
45
0

N
um
be
r
of
jo
bs

Bin sizes (Execution time)

Distribution of likely fast vs. slow jobs (AMG 512 nodes)

Likely fast jobs
Likely slow jobs

Fig. 11. Distribution of actual runtimes of likely fast versus slow jobs
of AMG when considering above median values of three features:
RT STL COL, RT STL GBL, and NUM GROUPS

Abhinav Bhatele

Results: Potential impact on job schedulers

28

10

0
2
4
6
8
10
12
14

32
0-
34
0

34
0-
36
0

36
0-
38
0

38
0-
40
0

40
0-
42
0

42
0-
44
0

44
0-
46
0

46
0-
48
0

48
0-
50
0

50
0-
52
0

52
0-
54
0

54
0-
56
0

56
0-
58
0

58
0-
60
0

N
um
be
r
of
jo
bs

Bin sizes (Execution time)

Distribution of likely fast vs. slow jobs (MILC 512 nodes)

Likely fast jobs
Likely slow jobs

Fig. 12. Distribution of actual runtimes of likely fast versus slow jobs of MILC and miniVite when considering above median values of three features:
RT STL COL, RT STL GBL, and NUM GROUPS

Figures 11 and 12 show the distributions of the execution
times of the likely fast and slow sets of jobs in each appli-
cation dataset. The histograms were generated with a fixed
number of bins over the entire execution time range of a
given dataset. Given the right skew present in application
runtimes, we elected to use the Kruskal-Wallace H. Test
to test for a difference in medians between the runtimes
of likely fast and slow jobs in each application dataset.
We found that for all the applications, the calculated p-
value was below 3e-05, indicating a statistically significant
difference between the likely fast and slow execution times.
Note that a one-way ANOVA test yields statistically sig-
nificant results below the 1% threshold for all applications.
Table 4 compares the mean execution times of the likely
fast versus slow jobs in each dataset. We can see that the
difference is significant, especially for MILC and miniVite in
spite of their predictions being poorer than AMG. This is a
powerful result with significant implications for improving
application performance and reducing variability.

TABLE 4
Mean execution times (in seconds) of the likely fast and slow subsets of

jobs in each dataset

Application Fast jobs Slow jobs

AMG 128 260.12 274.24
AMG 512 379.93 410.68
MILC 128 317.31 398.43
MILC 512 389.61 445.80
miniVite 128 309.96 372.26

We foresee two immediate applications of such a sys-
tem. Many HPC systems set an upper bound on the time
requested for a job (12 or 24 hours). As a result, science
simulations requiring months of running time must be sub-
mitted as multiple jobs to the job queue periodically. While
the inputs will change slightly as computation progresses,
the overall runtime profile and networking requirements of
an application usually do not vary significantly, providing
an optimal use case for our prediction system. When a job
gets scheduled, individual HPC users can gather network
counter data for a few minutes on all the routers assigned
to their job and use our pre-trained models to predict the
expected runtime of their application. They can use this pre-

diction to decide decide whether to go ahead with launching
their application or to give the allocation back and request
another job later.

Second, these results suggest that an intelligent job
scheduler can monitor a handful of counters, and use their
current values to determine if, for example, communication-
heavy jobs will perform well or poorly if scheduled right
away. Figures 11 and 12 demonstrate the power of predict-
ing job execution time solely based on the median aggre-
gation of just three network counters. While in this paper,
we analyzed these jobs after they had run, a job scheduler
would have access to similar counter data through LDMS
at the time when a job is ready to be scheduled. Such
adaptive decisions based on light-weight monitoring of a
few hardware counters on a subset of routers would prove
to be a useful tool.

7 SUMMARY AND FUTURE WORK

In this paper, we presented a data analytics study of
longitudinal system-wide monitoring data to predict the
performance of unseen jobs in the queue. We presented
a pipeline for extracting relevant data from a time series,
creating interpretable derived features, reducing the data,
and filtering and aggregating it in meaningful ways. We
then created several prediction models that only look at
prior system state before a job starts executing to predict
its runtime. Our models demonstrated good performance
on two different metrics and also helped in identifying
important input features.

We then demonstrated the use of three network hard-
ware counters to classify jobs in a dataset into likely fast
and likely slow with statistically significant results. This
demonstrates that an intelligent job scheduler could use
a similar simple mechanism or a more complex model-
based approach to forecast the performance of a pending
job. To the best of our knowledge, we believe that this is
one of the first works that uses system-wide monitoring
data and connects it with control experiments to predict the
performance of unseen jobs.

In the future, we plan to investigate more detailed
analysis of system- and facility-wide monitoring data to
detect patterns and anomalies in it. We also plan to create

• Classify jobs into likely fast or likely slow based on values of three most important
features

• Based on whether values of these features are above or below the median

9

Fig. 9. MAPE and PSLE scores for the NN model when combining datasets by application type. Two applications are used for training and the third
application is used for testing (x-axis label.)

We expect that as we add more applications with different
computation and communication signatures to our training
dataset, the prediction scores for other unseen applications
will improve.

Finally, we analyze feature importances when training
the neural network model using the combined datasets.
Figure 10 shows the relative feature importances for three
different training datasets (AMG+MILC, AMG+miniVite,
and MILC+miniVite), and two filterings (All routers and
My routers). Surprisingly, NUM_GROUPS emerges as a highly
important feature. In principle, one would expect that the
placement of a job should have little impact on its perfor-
mance due to adaptive indirect (UGAL) routing [6]. How-
ever, in practice, it is possible that when a job is spread over
more groups, the likelihood of encountering congestion on
global links increases. RT_STL_GBL (stalls on global links)
is also important for predicting all three applications as
we had observed in the previous plots. We also observe
that while applications share common important features,
some features are only important for certain datasets. We
notice that PT_STL_REQ (processor request stalls) is more
important when training using the AMG+miniVite dataset.
A feature that is important when filtering by My routers but
not All routers is RT_STL_COL (stalls on black links). On
the other hand, RT_FLIT_REQ (router tile flits on request
channels) is important when filtering by All routers. In the
next section, we show how we can use a small set of these
”significant counters” to assist the job scheduler in making
intelligent scheduling decisions.

Fig. 10. Relative importances of the most important counters obtained
using RFE for different router groups in the application-agnostic model.

6 INFLUENCING JOB SCHEDULING DECISIONS

In this section, we show how the findings in this paper
could be used by a job scheduler or HPC user for labeling
incoming jobs in the queue as likely to run relatively fast or
slow. The hypothesis is that by selecting a small number of
features (network counters) based on feature importances,
and analyzing their values when a new job is ready to be
scheduled, the job scheduler can quickly determine if the
job will run slow or fast. If this turns out to be true, a
job scheduler can decide to monitor certain features con-
tinuously, based on feature importances derived from the
application-agnostic models in Section 5.3.

We selected the three most important features from
the application-agnostic models in Figure 10: NUM_GROUPS,
RT_STL_GBL, and RT_STL_COL. We classify samples (jobs)
in three of our datasets (AMG 512, MILC 512, and miniVite
128) as “likely fast” or ”likely slow” based on whether the
system-wide values of these three counters were below the
median or above the median respectively, in the five minutes
prior to that job running. Once the jobs in a dataset have
been classified into likely fast or slow based on the values
of the selected network counters, we analyze their actual
execution times to see if our classification is statistically
significant.

0

2

4

6

8

10

34
6-
35
4

35
4-
36
3

36
3-
37
2

37
2-
38
0

38
0-
38
9

38
9-
39
8

39
8-
40
6

40
6-
41
5

41
5-
42
4

42
4-
43
2

43
2-
44
1

44
1-
45
0

N
um
be
r
of
jo
bs

Bin sizes (Execution time)

Distribution of likely fast vs. slow jobs (AMG 512 nodes)

Likely fast jobs
Likely slow jobs

Fig. 11. Distribution of actual runtimes of likely fast versus slow jobs
of AMG when considering above median values of three features:
RT STL COL, RT STL GBL, and NUM GROUPS

Abhinav Bhatele

Can we minimize performance variability?

• Topology-aware job scheduling

• Self-tuning systems

• Adaptive congestion-aware routing

• Adaptive scheduling of jobs

29

System-wide Monitoring Data The last category of data has the largest volume and is the most diverse.
System administrators at many HPC facilities are now gathering system-wide data from multiple super-
computers and clusters, and “facilities” data from temperature sensors, humidity sensors and power meters
in the machine rooms. The system-wide data includes on-node and off-node hardware counters including
network and filesystem data, and job queue logs. The per-job data includes information about the running
time of each job, its placement, and the resources requested among other things. This data is high volume
and very rich in information about the state of the running jobs and the systems. I believe that analyz-
ing this data can provide us with useful insights about optimizing application performance and operating
efficiency of the systems.

5 Research Plan
Given existing data and data collection mechanisms described above, three components are needed to

leverage such data for an effective self-tuning or auto-tuning system (Figure 1): anomaly detection and root
cause analysis, machine learning based modeling and forecasting, and taking actions based on the models
for self-tuning. These three components are organized into four thrusts (and corresponding subsections)

Anomaly detection &
root cause analysis

Machine learning based
modeling and forecasting

Data-/Model-
driven self-tuning

SELF-TUNING
SOFTWARE &

SYSTEMS

Figure 1: Three main components of a
self-tuning system.

below. First, we will discuss anomaly detection, root cause anal-
ysis and machine learning based modeling of application-specific
behavior in Section 5.1 and system behavior in Section 5.2. ML-
based predictive models can be used to model dependent variables
and also to predict/forecast the future behavior of software and sys-
tems. These models can be exploited by application runtimes and
system software such as job schedulers and resource managers to
self tune with certain optimization metrics in mind. We will present
these approaches for self-tuning of both parallel software and sys-
tems in Section 5.3. Finally, as a cross cutting theme, we will pro-
pose ideas for making such self-tuning approaches portable across
multiple platforms in Section 5.4. The primary benefit of this work
is the self-tuning of HPC systems and software, leading to better
performance and portability at large scales, with minimal effort
from the human programmer or system administrator.

5.1 Analytics and Modeling of Application-specific Data
The first thrust deals with analyzing data and training models based on data gathered from individual

parallel applications. Task 1A pertains to anomaly detection and root cause analysis, and Tasks 1B and 1C
are about creating machine learning models to predict application performance (execution time).

Task 1A: Identifying good and bad code modifications in performance regression data
In performance regression datasets (described in Sec 4), there is data from contiguous integration and

testing of different git commits of an application code, and we need to detect performance anomalies or
outlier executions and their root causes. In such datasets, it might be difficult to set a baseline performance
as ideal since the code is continuously evolving. We will take help from code experts to label runs or
experiments as relatively fast or slow. Once this is done, we need to identify which code transformations
are good versus bad for performance.

We propose to compare abstract syntax trees (ASTs) of different code snapshots for structural changes
and correlate the changes with those in performance. Predicting performance metrics directly from code
changes requires adaptation of machine learning solutions that can directly operate on structured data. For
example, employing convolutional neural networks [56] to ASTs is not feasible, since the tree structure is not
directly usable with the conventional notion of convolutions [66]. In other words, when simple Euclidean
analysis cannot be used on the data, for example two trees cannot be compared using an L2 distance,
popular ML solutions will fail. Consequently, the sub-field of building deep neural networks for structured
data (e.g. time-series, graphs, sets), referred to as geometric deep learning [20], has made significant strides
in recent years and presents opportunities for automating performance prediction of software.

Broadly, we propose the following machine learning based studies: (a) regress from ASTs to the ex-

5

Abhinav Bhatele

Availability of large-scale monitoring data
• Several Department of Energy laboratories are using LDMS to record monitoring

data: LLNL/LC, LBNL/NERSC, ANL/ALCF

• Vast quantities of rich but noisy data: on-node (flops, memory, caches), network,
filesystem, power, cooling

30

these reasons, it is useful to have low-overhead, simple-to-use
means of recording, gathering, and storing system monitoring
data.

However, building systems that can gather, store and provide
access to monitoring data is challenging. The first challenge is
that there are several disparate sources of data (system services,
performance tools, sensors, etc.), and the data is heterogenous
and in a variety of formats. Also, these data represent the
operation of different hardware components of a system or even
different systems. Hence, gathering this data efficiently and
storing it in a meaningful database schema are also challenges.
The second set of major challenges stem from allowing users
to analyze the collected data. The infrastructure for storing
system monitoring data would also need to facilitate big data
analysis as well as user permissions.

The Sonar system at LLNL has been designed to tackle
the above mentioned challenges and enable research that
uses system monitoring data to improve the efficiency of
HPC systems and individual jobs. Sonar represents the data
cluster that is responsible for ingesting data from numerous
sources and serving this data to end-user analysis tools. Data
is gathered from the compute clusters, file system, IB switches,
applications, and facilities using tools such as LDMS [6],
OMS [27], and Caliper [28]. These data are then ingested in a
distributed fashion via Kafka [29].

LLNL-PRES-749138
7

Compute
Clusters

Ingesting Data from Many Sources

LDMS

Sonar Data Cluster
Cassandra (distributed storage),
Spark (distributed processing)

Applications
Lustre

LDMS

IB
Switches

OMS

Facilities

PI

Other

TBD

Caliper

XALT

Jupyter

Dashboards
Visualization

Analysis

Kafka Distributed Ingestion

Fig. 3. Overview of the Sonar infrastructure at LLNL for recording
performance and other operation-related data on Livermore Computing’s HPC
clusters.

Once ingested, the data are stored in distributed Cassandra
tables on the cluster. The tables store table counters keyed on
node and datetime recorded at frequent intervals over time.
Users can directly query these tables using Cassandra’s cqlsh
tool or utilize Jupyter notebooks to analyze and visualize data.

B. Control Jobs and Variability Predictor Implementation
To facilitate our scheduler, we utilize a data pipeline which

controls running the proxy jobs, collecting the performance
and runtime system data, and training the ML models. The
flow of the pipeline is laid out in Figure 2. This pipeline needs
to be portable and efficient, so that the same experiments and
scheduler adaptations can be used on other machines.

To make our pipeline portable we designed it entirely using
bash to control job launches and Python to collect and analyze

data. Jobs are launched using configurations from environment
variables and can launch using either LSF or Slurm based
job schedulers. Once run the data from these jobs can be
aggregated and analyzed using Python and widely available
Python packages.

In addition to portability the pipeline needs to be efficient
in its storage and analysis of large amounts of data. Collecting
32 HPCToolkit profiles per day can create several million files
in a short amount of time. To alleviate this storage burden
we only store database files from hpcprof in addition to the
hatchet dataframes of them.

Given a set of application runs we collect a unified data set
depicted in Table I. To build contained data sets we query the
Sonar tables for aggregated LDMS data. We collect counter
information for the duration prior to a job running. In our tests
this was the 5 minutes prior to each proxy application’s run.
The counters were reduced over this interval with the min,
max, and mean of each being included as a column in the data
set. Next the profiling information, including the wall clock
time, is added into our table. This table is stored in a Pandas
dataframe, which is pickled and compressed for easier use in
the rest of the pipeline.

Prior to running experiments we train the ML models over
the collected data sets and select the best one based on their
F1-score and accuracy. At the end of the pipeline models are
exported for use in the scheduler.

C. Scheduler Implementation

Using this exported model we modify the Flux [30] frame-
work to implement our scheduler. Flux is a job scheduling
software designed for HPC, which integrates graph-based
resource modeling with traditional batch scheduling. This
section details how we implement our algorithm in Flux.
RUBS adds a scheduling policy within Flux to implement

its algorithm. This is done by adding a new ”schedul-
ing policy” class within the frameworks source. We ex-
tend the class queue_policy_fcfs_t which implements
an FCFS scheduling policy. This class in turn extends
queue_policy_base_t which is what Flux uses to order
its queue.

The RUBS implementation provides a modified
run_sched_loop function. In normal FCFS this function
is used to set the job queue and does the basic tasks:

cancel_completed_jobs();
allocate_jobs();

The modified implementation simply checks for variation in
jobs at the top:
cancel_completed_jobs();
allocate_jobs();
delay_sensitive_jobs();

This function calls a Python script and passes in the
job information via command line arguments. The Python
script then reads the collected counter data, runs the ML
models, and provides its prediction to standard output.

Image from Kathleen Shoga’s slides at LLNL

Abhinav Bhatele

Variability prediction
• Ran a large number of control jobs (hundreds per application): 7 different applications

• Train a classifier (AdaBoost) to predict if an app will experience variation

31

for the ML models to learn from, but not enough to cause
significant overhead.

Using MpiP we record the time spent waiting on the blocking
Send, Recv, and AllReduce calls on each node. For the dataset
we record the min, max, and mean of each of these values
across nodes. This becomes 9 features in each data point.

D. ML Input Data
Each of these application runs becomes a sample in the

final dataset. The input features for each sample consist of
the min, max, and mean of every counter in the sysclasib and
lustre client tables, the user provided application type label,
and the 9 aggregated benchmark results. Finally, each sample
has its run time and z-score as output labels.

TABLE I
DESCRIPTION OF THE INPUT FEATURES TO THE MACHINE LEARNING

MODEL.

Input source Counters Features Description

sysclassib 62 186 infiniband counters
opa info 62 186 Omni-Path switch counters
lustre2 client 44 132 Lustre client metrics
MPI benchmarks 3 9 Execution time
Proxy applications - 1 Compute Intensive

- 1 Network Intensive
- 1 I/O Intensive

This collected data is designed to encapsulate the machine
state during an application run and the relative performance of
that run. The goal of the ML models is to analyze the machine
state data and basic information about a job and predict if it
will experience variation. Several recent works have explored
using various models to learn over system data [26]. We find
static models trained on aggregate statistics to work well for
our purposes.

IV. RUBS: RESOURCE UTILIZATION-AWARE BATCH
SCHEDULER

We now present the two main components of RUBS: a
machine learning (ML) based variability predictor, and a model-
based adaptive job scheduling algorithm, and also describe the
design of the entire pipeline. Figure 2 highlights how each
component of the pipeline fits together to produce a better job
schedule.

Fig. 2. Pipeline Overview. The ML model is trained offline on historical
run and counter data. Optimal features are selected and a trained model is
exported. This trained ML model, current system data, and submitted jobs are
provided as input to the job scheduler, which in turn maps the jobs to system
resources over time.

A. Variability Predictor Module

The first module in the RUBS pipeline uses system and
control jobs data to predict if variation will occur from running
a job on the current system state. There are three inputs
to this module: system counters from Sonar, profiles from
longitudinal runs of proxy applications and timings from
the MPI benchmarks. Within this module feature and model
selection are done first followed by training and exporting the
chosen model and features.

The machine learning (ML) models in the first component
use the input data as described in Section III. We set up the
machine learning problem as a classification task with the goal
of classifying the occurrence of variation given the system and
benchmark data. The input to this model consists of the 516
features listed in Table I. For model and feature selection we
use binary classification and set the label of each data as 0 or
1. The first label, 0, is assigned when an application’s run time
is less than 1.5 standard deviations of its mean run time. This
signifies no variation. On the other hand, we assign a label
of 1 when the run time is greater than 1.5 standard deviations
from its mean. These variations are computed per-app using
the mean and standard deviation for each app’s run times, but
the model is trained on data from all apps. Instead of arbitrarily
selecting an ML model, we train a variety of models, and use
their F1-scores to to compare their performance (see Section
VI-B).

The set of classifiers used are standard models and we use
the best performing in the pipeline (see Section V) based on
F1-score. The models used are Extra Trees, Decision Forest,
K-Nearest Neighbors (kNN), and AdaBoost. Each is trained
using stratified cross validation to preserve the imbalance of
the data. To cross validate we split the data using 6 apps for
training and 1 for validation. This is performed over every
possible partitioning.

Features are selected after model selection using recursive
feature elimination. Features are eliminated recursively and
the set with the highest F1-score are kept. For the Extra Trees
and Decision Forest models, which have metrics for feature
importance, the least import features are removed first during
feature elimination.

After selecting the model and feature set the second
component outputs the trained ML model that can be used
offline.

The chosen model is trained using the same data and k-fold
cross-validation. However, this model is trained on 3 output
classes: no variation, little variation, and variation. Here the
variation label stays the same while the no variation label
is assigned when an application’s run time is less than 1.2
standard deviations from its mean run time. Little variation is
when the application’s run time is between 1.2 and 1.5 standard
deviations of its mean run time. These labels are chosen based
on our observations of application performance behavior. Most
applications perform close to the mean, while some deviate
just over 1 standard deviation. Finally, there are few outliers
which perform with extreme variation, or more than 1.5x the

delay_sensitive_jobs uses this to make a scheduling
determination as defined in Algorithm 2.

VI. EXPERIMENTAL SETUP

In this section we discuss the experiments used to test the
scheduler. We also present the metrics used to evaluate the ML
models and scheduler.

A. Scheduling Experiments
To test the effectiveness of our scheduler we designed

experiments to mimic typical workloads on an HPC system. We
then compare the proposed scheduling policy on this workload
with the default FCFS+backfilling scheduler as a control.

To mimic a typical HPC workload we design several
experiments using the seven proxy apps from before. We setup
a list of jobs, which should take roughly between 30 and 50
minutes to run all of them to completion. These jobs are run
on either 128, 256, or 512 nodes on Quartz. At the beginning
of the experiment we submit 20% of the jobs immediately
and submit the rest to the queue uniformly over 20 minutes.
This mimics normally scheduling behavior where knowledge
of every job to be scheduled is not known a-priori.

Since we ran on a single switch on the fat-tree we used a
noise job consuming 1/16th of the nodes, which continuously
sent variable amounts of all-to-all traffic on the network. This
allowed us to run less experiments as we observed variation
more frequently with the noise. To account for other system
noise we run each experiment 10 times: 5 with the control and
5 with the proposed scheduling policy.

We ran several different experiments to test how the
scheduling policy performed under different circumstances.
Table II highlights the 512 nodes experiments ran on Quartz.
We first test the scheduling policy on all of the apps. However,
to test the generalizability of the scheduler experiment ”PDPA ”
only runs 3 apps and uses the ML model trained on the other
4 exclusively. The final two experiments, ”WS ” and ”SS ”, test
how the policy generalizes to different scales of the jobs.

B. Metrics for ML Models
Before the scheduler is run in these experiments the ML

models need to be trained and exported. This section discusses
the metrics used to evaluate the success of the models in
predicting variation.

Performance variation is anomalous and, thus, the dataset
is imbalanced meaning testing accuracy is not a useful
performance metric. A model which predicts no variation will
occur would still yield an accuracy greater than 90%, but not
provide any meaningful information to the scheduler.

Due to this limitation we use precision and recall related
metrics to evaluate the success of our models. In particular
we use the F1-score to compare and find the best performing
model.

F1 =
tp

tp + 1
2 (fp + fn)

When comparing we use the average F1-score from the
cross-validation with each app removed. The F1-score was

calculated for the binary classification problem of variation vs
no variation.

C. Metrics for Scheduling

As pertaining to the schedulers we record metrics across
multiple different axes of improvement. Schedulers can provide
improvement in several different areas each of interest to
different parties in the supercomputing eco-system. Providing
reliability and high resource utilization is important to system
administrators, while end-users may be more concerned with
wait queue time and ease-of-use. Additionally, the efficiency
of the scheduler is typically crucial to everyone.

Scheduler efficiency can be measured in terms of the
makespan, which is defined as the duration from the submission
of the first job to the end of the last job. The makespan describes
the amount of time it takes a scheduling policy to complete a
workload on a certain system.

However, some policies with better makespans may see
adverse performance in other areas. So we also record the
mean time in queue as well as the mean job variation per app.
These give us an idea how much our scheduler increases wait
times in the queue as well as how much we reduce contention
on the network.

VII. RESULTS

In this section we present our results from the ML model
training and experiments.

A. ML Models

Figure 4 highlights the performance of the ML models. We
see that, given the system data and an expert counter pertaining
to the app, it is able to accurately analyze the current state of
the system and predict variation.

The high F1 score shows that the model can predict true
labels or instances of variation well. While all of them perform
well in this regard, the AdaBoost classifier outperforms the
others. The rate of successful classification further justifies
the use of the simpler models, rather than use of deep neural
networks or temporal data.

0

0.2

0.4

0.6

0.8

1

AdaBoost DecisionForest ExtraTrees kNN
F1
Sc
or
e

All Nodes Job-only Nodes

Comparing F1 Scores with All vs. Job-only System Data

Fig. 4. ML Models F1-scores. We see that the AdaBoost model has a higher
F1 score. Additionally, we see that the models have comparable performance
even without access to full system data.

Abhinav Bhatele

Self-tuning job scheduler

• Modify the job scheduler to:

• Obtain recent values of system counters

• Predict if the next job in the queue will experience variability

• If yes, put it back in the queue and try scheduling the next job

• Leverage the Flux scheduler framework developed at LLNL

• Enables us to run a scheduler within a job partition allocated by the system scheduler
(slurm)

32

Abhinav Bhatele

Application performance

33

TABLE II
DESCRIPTION OF EXPERIMENTS RUN IN A SYSTEM RESERVATION OF 512 NODES OF QUARTZ TO COMPARE THE NEW SCHEDULER TO THE DEFAULT.

Experiment Name Apps # of Jobs Description

ADAA All Data All Apps All 190
ADPA All Data Partial Apps Laghos, LBANN, PENNANT 150
PDPA Partial Data Partial Apps Laghos, LBANN, PENNANT 150 ML model trained on AMG, Kripke, PENNANT, SWFFT
WS Weak Scaling All 190 Jobs run on 8, 16, and 32 nodes – weak scaling
SS Strong Scaling All 190 Jobs run on 8, 16, and 32 nodes – strong scaling

The models also are insensitive to data exclusivity. When
system data from only the job’s nodes are used we see
comparable performance to training over the entire system data
(see Figure 4). This is an important performance component as
it allows the scheduler to only collect subsets of system data
at a time when making scheduling decisions.

Only needing a subset of system data gives the scheduler
implementation the flexibility to either fetch data from Sonar
or directly from the hardware counters on its nodes.

B. Reducing Application Variability

Based on the prior ML results the scheduler now has
knowledge of whether a job will experience variation or not.
This section provides results from the experiments and discusses
how RUBS impacted variation.

Based on the application run time trends in RUBS vs. the
control we see it successfully reduces the variation or, in a few
cases, it remains the same.

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

Lag
ho
s

AM
G

Kr
ipk
e

SW
FFT

PE
NN
AN
T

sw
4lit
e

LB
AN
NA

ve
ra
ge
N
um
be
r
of
R
un
s
w
ith
V
ar
ia
tio
n

Control
Experiment

Variation Occurrences Comparison ADAA

Fig. 5. The number of runs which experience variation significantly reduces
under the proposed scheduler.

Figures 5 and 6 show the number of runs which experienced
variation in each experiment. Averaged across the five runs
in the ADAA experiment the controls have between 2 and 4
application runs with significant variation (see Figure 5). Using
RUBS this is reduced to between 1 and 2. The most variation
prone applications, Laghos and LBANN, average almost zero
occurrences. This shows the ability of the scheduler to reduce
variation when its ML model has apriori knowledge of all the
applications being run.

Experiments ADPA and PDPA show that the variation im-
provement also holds when the ML model has not been trained
on all of the running applications. This is shown in Figure

6 where we see the same trends with Laghos and LBANN.
Pennant ends up averaging more variation in PDPA than ADPA ,
but within 0.5. Just using training data from AMG, Kripke,
SWFFT, and sw4lite the scheduler is able to reduce variation
in Laghos and LBANN.

Based on the reduced variation we would expect the range
in run times to be reduced for each application. Figures 7, 9,
and 8 compare the run times from each experiment.

Figure 7 compares the run times of the proxy apps between
the control and proposed scheduling policy. We see the most
sensitive apps, Laghos and LBANN, see improvements in
variability and mean run time. Furthermore, LBANN, Laghos,
and sw4lite also see significant reductions in the amount
of variation in run time. The scheduling policy is able to
successfully mitigate most instances of variation. PENNANT
is the only application which saw a decrease in max run time,
however, it was an small change at 0.1%.

From these results we also see an improvement in the max
run time. This is likely the most important improvement from
the perspective of an end-user as now they have a tighter upper
limit on their application’s running time. As before, Laghos,
LBANN, and sw4lite, all experience the largest improvement
in terms of max run time.

In Figure 9 we see that RUBS performs slightly worse when
it only has partial data versus having been trained on the full
data. However, it still reduces the max run time by up to 6%
in the case of LBANN. We can conclude that having access to
historical application runs prior to scheduling would improve
the schedulers performance. However, obtaining this data would
be difficult in practice.

Figures 8 and 10 display the applications under weak and
strong scaling. In the WS experiment RUBS reduces variation
and max run time more in the 8 and 16 node count runs. This
is likely due to more communication in the 32 node runs and
bias in the ML model from only training on 16 node runs.

Figure 10 shows the percent improvement in max run time
when the applications are strong scaled. We see that the
scheduler still provides improvement even as the amount of
work per node decreases. With the exception of Kripke and
LBANN the 8 and 32 node runs perform better than the 16
node runs. For each app the max run time is reduced.

In experiments WS and SS there were no applications with
degradation in max run time. The run time distributions either
stayed the same or, more often, reduced in range. This displays
the ability of RUBS to extend to more node counts even under
different types of scaling.

Fig. 6. There is only a slight increase in number of applications experiencing variation when using the ML model trained on data from separate applications.

650

700

750

800

850

Laghos LBANN

T
im
e
(s
ec
)

4.9%

4.0%

475

500

550

600

650

675

AMG Kripke SWFFTPENNANTsw4lite

FCFS + EASY
RUBS

2.6%

2.4%

0.2%

-0.1%

5.8%

ADAA Application Performance

Fig. 7. The run times for all apps in experiment ADAA

C. Scheduler

The makespan of the scheduling policies is compared in
Figure 11. With each run the makespan is improved by at
least 30 seconds and almost 2 minutes in the ”SS ” experiment.
The variation in each application has been reduced without
burdening the makespan significantly and in some cases
improving it.

By reducing the expected run time of some of the appli-
cations RUBS reduces the duration of some of its tasks. In
cases where a significant amount of variation is prevented the
scheduler will have a lower makespan.

We see from figure 12 how the wait times for each application
changes. This figure only includes wait times for the 80% of
applications which did not begin in the queue. Under the
proposed scheduler the wait times are spread out and show
both favorable and worse performance compared to the control
scheduler.

The average wait time went up for variation intensive apps
such as Laghos and LBANN. This is due to them being pushed
back in the queue more often than others. Both Kripke and
AMG got through the queue faster on average in the RUBS
scheduler.

Though the wait time varies it is always within a minute.
This less than a percent change is within the range of acceptable

wait time slowdowns for an end user.

VIII. CONCLUSION

We have shown that using system monitoring data and
historical run information the variation incurred by running a
job on a current system state can be accurately predicted. Using
this result we have shown that the scheduling policy on an HPC
system can be changed to mitigate variation and even improve
overall system utilization. In practice an implementation of
this policy could improve utilization as well as allow users to
run code with more predictable run times.

For future work we will continue investigating how this a
priori knowledge of performance variation can be integrated
with schedulers and other system mechanisms to improve
resource utilization.

REFERENCES

[1] I. J. Costello and A. Bhatele, “Analytics of longitudinal system monitoring
data for performance prediction,” 2020.

[2] A. Bhatele, J. J. Thiagarajan, T. Groves, R. Anirudh, S. A. Smith, B. Cook,
and D. K. Lowenthal, “The case of performance variability on dragonfly-
based systems,” in Proceedings of the IEEE International Parallel &
Distributed Processing Symposium, ser. IPDPS ’20. IEEE Computer
Society, May 2020.

[3] “Slurm workload manager,” 2020. [Online]. Available: https://slurm.
schedmd.com/documentation.html

[4] “Ibm spectrum lsf session scheduler,” 2021. [Online]. Available: https://
www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-session-scheduler

[5] D. Klusáček and V. Chlumskỳ, “Evaluating the impact of soft walltimes
on job scheduling performance,” in Workshop on Job Scheduling
Strategies for Parallel Processing, 2018, pp. 15–38.

[6] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The lightweight distributed metric
service: A scalable infrastructure for continuous monitoring of large scale
computing systems and applications,” in SC ’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2014, pp. 154–165.

[7] F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q,” in Proceedings of the 2003 ACM/IEEE
conference on Supercomputing (SC’03), 2003.

[8] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There
goes the neighborhood: performance degradation due to nearby
jobs,” in Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’13. IEEE Computer Society, Nov. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503247

Abhinav Bhatele

Scheduler throughput

34

Fig. 10. This figure displays the percent improvement in max run time for each application in experiment SS under strong scaling with the control and
proposed scheduling policy.

0

10

20

30

40

50

60

70

ADAA ADPA PDPA WS SS

T
im
e
(m
in
ut
es
)

Experiment

FCFS + EASY

46.1 44.5 44.4
50.1 50.1

RUBS

45.8 44.0 44.0
49.7 49.0

Makespan

Fig. 11. Scheduler makespans. For each experiment this figure displays the
control and new scheduler’s makespans averaged over their 5 runs. RUBS
outperforms the control in each experiment.

Conference for High Performance Computing, Networking, Storage and
Analysis, 2016, pp. 550–560.

[29] Apache Software Foundation, “Kafka.” [Online]. Available: https:
//kafka.apache.org/

[30] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein,
J. Koning, T. Patki, T. R. W. Scogland, B. Springmeyer, and M. Taufer,
“Flux: Overcoming scheduling challenges for exascale workflows,” in
2018 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS),
2018, pp. 10–19. Fig. 12. This figure displays the average wait time per app in experiment

ADAA . We the proposed scheduler has a larger range of wait times and is
often higher.

Fig. 10. This figure displays the percent improvement in max run time for each application in experiment SS under strong scaling with the control and
proposed scheduling policy.

Fig. 11. Scheduler makespans. For each experiment this figure displays the
control and new scheduler’s makespans averaged over their 5 runs. RUBS
outperforms the control in each experiment.

Conference for High Performance Computing, Networking, Storage and
Analysis, 2016, pp. 550–560.

[29] Apache Software Foundation, “Kafka.” [Online]. Available: https:
//kafka.apache.org/

[30] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein,
J. Koning, T. Patki, T. R. W. Scogland, B. Springmeyer, and M. Taufer,
“Flux: Overcoming scheduling challenges for exascale workflows,” in
2018 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS),
2018, pp. 10–19.

0

5

10

15

20

Lag
ho
s

AM
G

Kr
ipk
e

SW
FFT

PE
NN
AN
T

sw
4lit
e

LB
AN
N

W
ai
t
T
im
e
(m
in
)

FCFS + EASY

12.2 12.3 12.1 12.6 12.3 12.1 12.4

RUBS

12.2 12.3 12.1 12.6
12.3 12.1 12.4

Average Wait Time

Fig. 12. This figure displays the average wait time per app in experiment
ADAA . We the proposed scheduler has a larger range of wait times and is
often higher.

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Identifying best performing code variants

• Many computational science and
engineering (CSE) codes rely on solving
sparse linear systems

• Many choices of numerical methods

• Optimal choice w.r.t. performance depends
on several things:

• Input data and its representation, algorithm and its
implementation, hardware architecture

35

LLNL-PRES-xxxxxx
2

Overview of the problem

Platform

⋯

−∆𝑢 = 1
−div(𝜎(u)) = 0

curl curl E + E = 𝑓
-grad(𝛼 div(F)) + 𝛽 F = f

⁞

Preconditioner
Linear Solver

??

models

� Many computational science
and engineering (CSE) code rely
on solving sparse linear systems

� Many choices of numerical
methods

� Performance of a method
depends on
— input data
— data representation
— algorithm
— Implementation
— platform

� Choosing an optimal method for
a given problem is challenging

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Auto-tuning with limited training data

36

0

10

20

30

40

50

60

70

80

90

1 10 100 1000

N
um
be
r
of
co
nf
gu
ra
tio
ns

Execution time (s)

Kripke: Performance variation due to input parameters

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

36

0

10

20

30

40

50

60

70

80

90

1 10 100 1000

N
um
be
r
of
co
nf
gu
ra
tio
ns

Execution time (s)

Kripke: Performance variation due to input parameters

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

36

0

10

20

30

40

50

60

70

10 20 30 40

N
um
be
r
of
ru
ns

Execution time (s)

Quicksilver: Performance variation due to external factors

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

• Surrogate models + transfer learning

36

0

10

20

30

40

50

60

70

10 20 30 40

N
um
be
r
of
ru
ns

Execution time (s)

Quicksilver: Performance variation due to external factors

Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING 37

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

