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Why machine learning for HPC?

® Proliferation of performance data

¢ On-node hardware counters
e Switch/network port counters
e Power measurements

* Traces and profiles

e Supercomputing facilites’ data

* Job queue logs, performance

® Sensors: temperature, humidity, power
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Types of ML-related tasks in HPC

® Auto-tuning: parameter search

e Find a well performing configuration

® Predictive models: time, energy, ...

® Predict system state in the future

* Time-series analysis

® |dentifying root causes/factors
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Network congestion

® Responsible for performance degradation, variability and poor scaling

e Congestion and its root causes not well understood

e Study network hardware performance counters and their correlation with execution
time

e Use supervised learning to identify hardware components that lead to congestion
and performance degradation
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Life of a message packet
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Life of a message packet
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Life of a message packet
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Life of a message packet

e e S E s e e e e e e e R S (o e . T o O RN Y ) S
| | l | |
. Processor Router i | Router ! i Router Processor i
|
| | | | | |
: Injection Memory Injection Network : | | Intermediate buffers : : Reception Network Reception Memory :
FIFO task FIFO de ' FIFOs (per node FIFOs (per task

| * (per tasig * (per node) ' On the network ! : _ | On the network | ® ) ® ) :
: _> | : Reception Injection | | : _> :
| — — =P>0 0 o=p> | L1 [— |=P>00o=p> — — |
I o o I I o o I o ° I
I : - ° ' ! o o ' ! o <4 S !
| — — ! ' e | : — — :
| 1 — | R ] ] | | —1 1 |
! —1 — ! R | || : I — :
|

\ TR TEeeee—— | — oo ____TTTTTTTTTTL,

Source node Intermediate node Destination node

Hardware resource

Source node
Network link

Intermediate router
All

Ve DEPARTMENT OF :
@ COMPUTER SCIENCE Abhinav Bhatele




Gathering data for machine learning

o (Collect network hardware counters data on IBM Blue Gene/Q and use a functional
simulator

o Use Rubik task mappings to get a range of execution times for the same application
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Gathering data for machine learning

® (Collect network hardware counters data on IBM Blue Gene/Q and use a functional
simulator

Hardware resource Contention indicator

B Source node Injection FIFO length
Network link Number of sent packets
Intermediate router Receive buffer length

r All Number of hops (dilation)

o Use Rubik task mappings to get a range of execution times for the same application
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Gathering data for machine learning

\,:‘ w5 .r-.b
N G
D -
1% |

A
S -
r, Y
g W e S
S

Feature name

Description

All Resources

avg dilation AO
max dilation

sum dilation AO

Avg. dilation of average outliers (AO)

Maximum dilation
Sum of dilation of AO

Network Link

avg bytes

avg bytes AO
avg bytes TO
max bytes

#links AO bytes

Avg. bytes per link

Avg. bytes per link for AO

Avg. bytes per link for top outliers (TO)
Maximum bytes on a link

No. of AO links w.r.t. bytes

Intermediate

avg stal
avg stal
avg stal!

S
S
S

max stal

AO
TO

IR

#links AQO stalls

Avg. receive buffer length
Avg. receive buffer length for AO

Avg. receive buffer length for TO
Maximum receive buifer length

No. of AO links w.r.t. recv buffer length

Router

avg stall
avg stall

avg stal

S

max stal

_lépp
#links AO stallspp

S|
S|

Dp
pp AO

op TO

Avg. number of stalls per rcv’d packet
Avg. no. of stalls per packet for AO
Avg. no. of stalls per packet for TO
Maximum number of stalls per packet
No. of AO links w.r.t. stalls per packet

Source Node
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Experimental Setup

® Three benchmarks: 5-point 2D Halo, |5-point 3D Halo, All-to-all over sub-
communicators

e [wo scientific applications: pF3D, MILC

2D Halo 3D Halo Sub A2A MILC pF3D Total

#Nodes 16 KB 4MB 16 KB 4 MB 16 KB 4 MB
1024 84 84 84 84 84 84 208 94 806
4096 84 84 84 84 84 84 103 103 710

Total 168 168 168 168 168 168 311 197 1516

® Regression methods in scikit-learn: extremely randomized trees, gradient boosted
regression trees
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Predicting the execution time

® Scale the input features to values between O and |
e Split samples into training and testing set (2/3 : 1/3)
® Generate all possible combinations (2!?) of the |9 input features

® Parallel runs to try all combinations and report prediction scores
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Evaluation criteria

e Kendall rank correlation coefficient

(n—1)

RCC=( Y. Y concordy) /(-

0<=i<n 0<=5<i

concord;; =

0, otherwise

o (Coefficient of determination, R2

2

1, 1if x; >= I, &:yi >=1Y;
1, ifxi<xj&yi<yj
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Feature importance (individual datasets)

Feature ranks for RCC (GBRT, Huber loss function)
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ldentifying important features

® Use quantile loss function in the GBRT regressor

Proximity of predictions
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ldentifying important features

Feature subset selection based on Kernels
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ldentifying important features

Feature subset selection based on Kernels

0.9 quantile I
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ldentifying important features

Feature subset selection based on Kernels

0.9 quantile I
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ldentifying important features

Feature subset selection based on Kernels

0.9 quantile I
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Technique for feature selection

e Create split of dataset into training and testing set
® |Learn GBRT regressor with quantile loss function at 0.1 quantile and 0.9 quantile
o |dentify feature subsets that are important at different quantiles

® Use the subsets to identify new feature importances
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The causes of network congestion
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The causes of network congestion
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The causes of network congestion
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The causes of network congestion
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The causes of network congestion

® Average and maximum length of receive buffers
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The causes of network congestion

® Average and maximum length of receive buffers

® Average load on network links
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The causes of network congestion

® Average and maximum length of receive buffers

® Average load on network links

e Maximum length of injection FIFOs
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Interference from other jobs

Performance of control jobs running the same executable and input varies as they are run from day-to-day
on |28 nodes of Coriin 2018-2019

MILC O UMT ¢

25 PP FT Y T SO, Y N S SUTTRTON. W SOR A ST W W S T W T B S S

1.5

Relative performance
N

Nov 29 Dec |3 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21

Bhatele et al. The case of performance variability on dragonfly-based systems, IPDPS 2020
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Interference from other jobs

Relative performance
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Data analytics study to understand variability

® Primarily focus on variability arising from sub-optimal communication on the network

® Set up controlled experiments on a dragonfly-based Cray system:

e Submit jobs of the same applications periodically in the batch queue for ~4 months

e Collect network hardware counters per iteration for each job and other data
described later

® Use machine learning to analyze the gathered performance data
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Run four applications in control jobs

® Gather network hardware counters on Aries routers connected to my jobs’ nodes

® Hardware counters and execution time recorded per iteration

Application No. of nodes Input Parameters

[ AMG 1.1 1238 -P 32 16 16 -n 32 32 32 -problem 2

9 AMG 1.1 512 -P 32 32 32 -n 32 32 32 -problem 2

&  MILC7.8.0 128 n128_large.in

': MILC 7.8.0 512 n512_large.in

v  miniVite 1.0 128 -t nlpkkt240.bin -t 1E-02 -i 6
UMT 2.0 128 custom_8k.cmg 4 2 4 4 4 0.04
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Other sources of data for analytics

® Job queue logs

* Information about jobs running concurrently with a specific control job

® Job placement

* Number of unique groups and routers to which a control job is assigned

e System-wide counters for all Aries routers gathered using LDMS

e All routers:all routers connected to compute or /O nodes

* |/O routers: only routers connected to /O servers

B PSSG |2 saormae
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Analysis I Identifying predictors of deviation

e Execution times and network counters data are available for each iteration of the
application

e Each iteration is treated as an independent sample

® We create models to predict the deviation of the execution time instead of the
absolute time

® We use gradient boosted regression to generate a predictive model and recursive
feature elimination (RFE) to study feature importances
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Results: Identifying predictors of deviation

Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.

AMG 128 nodes ] i []
AMG 512 nodes ] L] []
MILC 128 nodes ] ] []
MILC 512 nodes [] []
miniVite 128 nodes | [] OO0 O [] []
UMT 128 nodes 0 O 0O ] [
[ — © O o < = = O )
c o 9 ¥ = 2 R P 2 F
| I | —1 I I | | | 1
= C X — = = = C x -
|.|_I n.l ml m' |_|_I |.|_I L|_| D'| ml ml
o Y x, °) ) 3 3 3 5
— — — =
Y al 0 al
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Results: Identifying predictors of deviation

Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.
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Analysis II: Forecasting within-run variation

® |dea is to predict next k time steps based on
knowledge of m previous time steps

® Use a sliding window approach to create the
training set

® We use the popular scalar dot-product
attention model along with a fully connected
neural network

® VWe explore using different groups of
features to understand the impact on model
accuracy
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MAPE

Results: Forecasting within-run variation

|2 ..............................................
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MAPE = Mean Absolute Percentage Error, m = temporal context, k = predicting future time steps
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MAPE

Results: Forecasting within-run variation
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Analysis lll: Using only system data

e Use system state before a job starts running to predict performance
® No application-specific features are used
® Train a 2-layer neural network that combines multiple datasets

® (Goal: develop application-agnostic models | DMS gathers
data every second

AAAAAAAAAAAAAAAAAAAAAAAAAARAAR"

|<— 5 mins prior q

to job
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MAPE comparison for application-agnostic models
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Results: Predicting perf. of unseen jobs

Most Important Features for Different Training Datasets 0.200
MILC+miniVite: All Routers
0.175 s
B 10 — MILC+miniVite: My Routers B e 44 =N s
utJ 0.150
R 8 |- AMG+miniVite: All Routers
S -0.125 ...
c
Y AMG+miniVite: My Routers
z 6 -0.100
n_ .........
AMG+MILC: All Routers
8 4p -0.075
e,
AMG+MILC: My ROUters . SS9 e A Arcn SN
2 oL ! 10.050
c
5 oL & -0.025
> &7 512
-0.000

Based on global routers

lan Costello et al. Analytics of Longitudinal System Monitoring Data for Performance Prediction. https://arxiv.org/abs/2007.0345 |
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Results: Potential impact on job schedulers

e Classify jobs into likely fast or likely slow based on values of three most important
features

e Based on whether values of these features are above or below the median

Distribution of likely fast vs. slow jobs (AMG 512 nodes)
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Results: Potential impact on job schedulers

e Classify jobs into likely fast or likely slow based on values of three most important
features

e Based on whether values of these features are above or below the median
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Can we minimize performance variability?

Anomaly detection &
root cause analysis

® Jopology-aware job scheduling

® Self-tuning systems SELF-TUNING &7
SOFTWARE &
e Adaptive congestion-aware routing SYSTEMS
e Adaptive scheduling of jobs @ q :\
Data-/Model- Machine learning based
driven self-tuning modeling and forecasting
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Availability of large-scale monitoring data

® Several Department of Energy laboratories are using LDMS to record monitoring
data: LLNL/LC, LBNL/NERSC, ANL/ALCF

® Vast quantities of rich but noisy data: on-node (flops, memory, caches), network,
filesystem, power, cooling

Compute |B _—
Lustre : Facilities
Applications Clusters Switches
LDMS LDMS OMS Pl

XALT

Kafka Distributed Ingestion

/
Jupyter
Dashboards Sonar Data Cluster
V';“a“za_t'on Cassandra (distributed storage),
nalysis

Spark (distributed processing)

Image from Kathleen Shoga’s slides at LLNL
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Variability prediction

® Ran a large number of control jobs (hundreds per application): 7 different applications

® Train a classifier (AdaBoost) to predict if an app will experience variation

Comparing Fl Scores with All vs. Job-only System Data

I g
N All Nodes Il |ob-only Nodes O~
— 08
Input source Counters Features Description
sysclassib 62 186  1infiniband counters O
opa_info 62 186  Omni-Path switch counters — 06 —
lustre2_client 44 132  Lustre client metrics 8
MPI benchmarks 3 9  Execution time %)
Proxy applications I  Compute Intensive — 4 -
1  Network Intensive L 0.
1 /O Intensive
0.2
0

AdaBoost DecisionForest Extralrees IKNN
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Self-tuning job scheduler

® Modify the job scheduler to:

e Obtain recent values of system counters
* Predict if the next job in the queue will experience variability

o |f yes, put it back in the queue and try scheduling the next job

® |everage the Flux scheduler framework developed at LLNL

® Enables us to run a scheduler within a job partition allocated by the system scheduler
(slurm)

B PSSG | Basissarms 2



Application performance

Variation Occurrences Comparison ADAA
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Scheduler throughput

Makespan
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ldentifying best performing code variants

S
Scientific/engineering

application

e Many computational science and

engineering (CSE) codes rely on solving A Ny Py . hag
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o Optimal choice w.r.t. performance depends
on several things:

* |nput data and its representation, algorithm and its
implementation, hardware architecture
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Auto-tuning with limited training data

Kripke: Performance variation due to input parameters

Number of configurations

| 10 100 1000

Execution time (s)
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Auto-tuning with limited training data

Kripke: Performance variation due to input parameters

e Application performance depends on many factors:

* |nput parameters, algorithmic choices, runtime parameters

Number of configurations

| 10 100 1000

Execution time (s)
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Auto-tuning with limited training data

e Application performance depends on many factors:

* |nput parameters, algorithmic choices, runtime parameters

® Performance also depends on:

e Code changes, linked libraries

e Compilers, architecture
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Quicksilver: Performance variation due to external factors
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Auto-tuning with limited training data

Quicksilver: Performance variation due to external factors

e Application performance depends on many factors: )
* |nput parameters, algorithmic choices, runtime parameters N

® Performance also depends on: E
e Code changes, linked libraries § 30

e Compilers, architecture 20

® Surrogate models + transfer learning 0
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