
Fall 2021 CMSC 420

Hanan Samet

Programming Assignment 1:

A Data Structure for VLSI Applications1

Abstract

In this assignment you are required to implement an information management system for handling

data similar to that used in VLSI (very large scale integration) as well as game programming applica-

tions. In such an environment the primary entities are small rectangles and the problem in which we are

interested is how to manage a large collection of them. In the following we trace the development of the

MX-CIF quadtree, a variant of the quadtree data structure that has been found to be useful for such a

problem. Your task is to implement a MX-CIF Quadtree in such a way that a number of operations can

be efficiently handled. An example JAVA applet for the data structure can be found on the home page of

the class.

This assignment is divided into four parts. C or C++ are the permitted programming languages.

JAVA is not permitted. Also, you are not allowed to make use of any built in data structures from any

library such as, but not limited to, STL in C++. For the first two parts, you must read the attached

description of the problem and data structure. A detailed explanation of the assignment including the

specification of the operations which you are to implement is found at the end of the description. After

you have done this, you are to turn in a proposed implementation of the data structure using C++ classes

or C structs. definitions. One week later you must turn in a C++ or C program for the command decoder

(i.e., scanner for the commands corresponding to the operations which are to be performed on the data

structure). For the third part, you are to write a C++ or C program to implement the data structure and

operations (1)-(9). For the fourth part, you are to implement operations (10)–(14). Operations (15)–(18)

are optional and you will get extra credit if you turn them in with the completed part four on time. If you

are a graduate student, part four is not optional.

1Copyright c©2021 by Hanan Samet. No part of this document may be reproduced, stored in a retrieval system, or transmitted,

in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the express prior permission

of the author.

1 Region-Based Quadtrees

The quadtree is a member of a class of hierarchical data structures that are based on the principle of recursive

decomposition. As an example, consider the point quadtree of Finkel and Bentley [2] which should be

familiar to you as it is simply a multidimensional generalization of a binary search tree. In two dimensions

each node has four subtrees corresponding to the directions NW, NE, SW, and SE. Each subtree is commonly

referred to as a quadrant or subquadrant. For example, see Figure A2 where a point quadtree of 8 nodes is

presented. In our presentation we shall only discuss two-dimensional quadtrees although it should be clear

that what we say can be easily generalized to more than two dimensions. For the point quadtree the points

of decomposition are the data points themselves (i.e., in Figure A, Chicago at location (35,40) subdivides

the two dimensional space into four rectangular regions). Requiring the regions to be of equal size leads to

the region quadtree of Klinger [6, 8, 7]. This data structure was developed for representing homogeneous

spatial data and is used in computer graphics, image processing, geographical information systems, pattern

recognition, and other applications. For a history and review of the quadtree representation, see pp. 28–48

and 423–426 in [9].

Chicago

Mobile
Toronto

(a)

(b)

MiamiAtlantaBuffalo

OmahaDenver

(0,100) (100,100)

(100,0)(0,0)

y

x

(5,45)
Denver

(35,42)
Chicago

(27,35)
Omaha

(52,10)
Mobile

(62,77)
Toronto

(82,65)
Buffalo

(85,15)
Atlanta

(90,5)
Miami

Figure A: A point quadtree and the records it represents corresponding to the data of Figure D:
(a) the resulting partition of space and (b) the tree representation.

As an example of the region quadtree, consider the region shown in Figure Ba which is represented by

a 23×23 binary array in Figure Bb. Observe that 1’s correspond to picture elements (termed pixels) which

are in the region and 0’s correspond to picture elements that are outside the region. The region quadtree

representation is based on the successive subdivision of the array into four equal-size quadrants. If the array

does not consist entirely of 1’s or 0’s (i.e., the region does not cover the entire array), then we subdivide it

into quadrants, subquadrants, ... until we obtain blocks (possibly single pixels) that consist entirely of 1’s

or entirely of 0’s. For example, the resulting blocks for the region of Figure Bb are shown in Figure Bc

This process is represented by a quadtree in which the root node corresponds to the entire array, the four

2All page numbers refer to [9] while figure labels are upper case letters which are numbers in [9].

1

sons of the root node represent the quadrants, and the leaf nodes correspond to those blocks for which no

further subdivision is necessary. Leaf nodes are said to be BLACK or WHITE depending on whether their

corresponding blocks are entirely within or outside of the region respectively. All non-leaf nodes are said to

be GRAY. The region quadtree for Figure Bc is shown in Figure Bd.

(d)

0 0 0 0 00 0 0

0

0

0

0

0

0

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

00

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1

(b)

1

2 3

4 5

6
7 8

9 10
13

11 12

14

15 16

17 18
19

(c)(a)

A

NW

NE SW

SE

1

2 3 4 5 6 11 12 13 14 19

7 8 9 10 15 16 17 18

B C

D F

E

Figure B: (a) Sample region, (b) its binary array representation, (c) its maximal blocks with
the blocks in the region being shaded, and (d) the corresponding quadtree.

2 MX Quadtrees

There are a number of ways of adapting the region quadtree to represent point data. If the domain of data

points is discrete, then we can treat data points as if they were BLACK pixels in a region quadtree. An

alternative characterization is to treat the data points as non-zero elements in a square matrix. We shall use

this characterization in the subsequent discussion. To avoid confusion with the point and region quadtrees,

we call the resulting data structure an MX quadtree (MX for matrix).

The MX quadtree is organized in a similar way to the region quadtree. The difference is that leaf nodes

are BLACK or empty (i.e., WHITE) corresponding to the presence or absence, respectively, of a data point

in the appropriate position in the matrix. For example, Figure C is the 23×23 MX quadtree corresponding

to the data of Figure D. It is obtained by applying the mapping f such that f (z) = z÷ 12.5 to both x and y

coordinates. The result of the mapping is reflected in the coordinate values in the figure.

Each data point in an MX quadtree corresponds to a 1× 1 square. For ease of notation and operation

using modulo and integer division operations, the data point is associated with the lower left corner of the

square. This adheres to the general convention followed throughout this presentation that the lower and left

boundaries of each block are closed while the upper and right boundaries of each block are open. We also

2

(a)

(b)

A

JI

MiamiAtlantaMobileOmahaChicagoDenverBuffaloToronto

DC

HGF

B

E

(0,8) (8,8)

(8,0)(0,0)

y

x

(5,45)
Denver

(35,42)
Chicago

(27,35)
Omaha

(52,10)
Mobile

(62,77)
Toronto

(82,65)
Buffalo

(85,15)
Atlanta

(90,5)
Miami

Figure C: An MX quadtree and the records it represents corresponding to the data of Figure D:
(a) the resulting partition of space and (b) the tree representation.

NAME X Y

Chicago 35 42

Mobile 52 10

Toronto 62 77

Buffalo 82 65

Denver 5 45

Omaha 27 35

Atlanta 85 15

Miami 90 5

Figure D: Sample list of cities with their X and y coordinate values.

assume that the lower left corner of the matrix is located at (0,0). Note that, unlike the region quadtree,

when a non-leaf node in the MX quadtree has four BLACK sons, they are not merged. This is natural since

a merger of such nodes would lead to a loss of the identifying information about the data points, as each data

point is different. On the other hand, the empty leaf nodes have the absence of information as their common

property; so, four WHITE sons of a non-leaf node can be safely merged.

3

Quadtrees are especially attractive in applications that involve search. A typical query is one that re-

quests the determination of all nodes within a specified distance of a given data point—e.g., all cities within

50 miles of Washington, D.C. The efficiency of quadtree-like data structures lies in their role as a pruning

device on the amount of search that is required. Thus, many records will not need to be examined.

As an example we use the point quadtree of Figure A although the extension to an MX quadtree is

straightforward. Suppose that we wish to find all cities within eight units of a data point with coordinate

values (83,10). In such a case, there is no need to search the NW, NE, and SW quadrants of the root (i.e.,

Chicago with coordinate values (35,40)). Thus, we can restrict our search to the SE quadrant of the tree

rooted at Chicago. Similarly, there is no need to search the NW and SW quadrants of the tree rooted at Mobile

(i.e., coordinate values (50,10)).

As a further clarification of the amount of pruning of the search space that is achievable by use of the

point quadtree, we make use of Figure E In particular, given the problem of finding all nodes within radius

r of point A, use of the figure indicates which quadrants need not be examined when the root of the search

space, say R, is in one of the numbered regions. For example, if R is in region 9, then all but its NW quadrants

must be searched. If R is in region 7, then the search can be restricted to the NW and NE quadrants of R. For

more details on MX quadtrees, see pp. 38–42.

A

r

1 2 3

9 10

13

1211

4

5

876

Problem: Find all nodes within
 radius r of point A
Solution: If the root is in region I
 (I =1…13), then continue
 to search in the quadrant
 specified by I

1. SE
2. SE, SW
3. SW
4. SE, NE
5. SW, NW
6. NE
7. NE, NW

8. NW
9. All but NW

10. All but NE
 11. All but SW
12. All but SE
13. All

Figure E: Relationship between a circular search space and the regions in which a root of a
quadtree may reside.

3 MX-CIF Quadtrees

The MX-CIF quadtree is a quadtree-like data structure devised by Kedem [5] (who used the term quad-CIF

tree) for representing a large set of very small rectangles for application in VLSI design rule checking. The

goal is to rapidly locate a collection of objects that intersect a given rectangle. An equivalent problem is to

insert a rectangle into the data structure under the restriction that it does not intersect existing rectangles.

The MX-CIF quadtree is organized in a similar way to the region quadtree. A region is repeatedly

subdivided into four equal-size quadrants until we obtain blocks which do not contain rectangles. As the

4

subdivision takes place, we associate with each subdivision point a set containing all of the rectangles that

intersect the lines passing through it. For example, Figure F contains a set of rectangles and its corresponding

MX-CIF quadtree. Once a rectangle is associated with a quadtree node, say P, it is not considered to be a

member of any of the sons of P. For example, in Figure F, rectangle 11 overlaps the space spanned by both

nodes D and F but is only associated with node D, while rectangle 12 is associated with node F.

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

(a)

(b)

Figure F: (a) Collection of rectangles and the block decomposition induced by its MX-CIF
quadtree; (b) the tree representation of (a).

YA

YG
10

YI

2

YJ

YH

6
YL

8
XA

XH
9

XJ
7

XI

XG

(a) (b)

Figure G: (a) Binary trees for the (a) x axis and (b) y axis passing through node A in Figure F.

At this point, it is also appropriate to comment on the relationship between the MX-CIF quadtree and the

MX quadtree. The similarity is that the MX quadtree is defined for a domain of points with corresponding

5

nodes that are the smallest blocks in which they are contained. Similarly, the domain of the MX-CIF

quadtree consists of rectangles with corresponding nodes that are the smallest blocks in which they are

contained. In both cases, there is a predetermined limit on the level of decomposition. One major difference

is that in the MX-CIF quadtree, unlike the MX quadtree, all nodes are of the same type. Thus, data is

associated with both leaf and non-leaf nodes of the MX-CIF quadtree. Empty nodes in the MX-CIF quadtree

are analogous to WHITE nodes in the MX quadtree. An empty node is like an empty son and is represented

by a NIL pointer in the direction of a quadrant that contains no rectangles. For more details on MX-CIF

quadtrees, see pp. 466–473 in [9]. It should be clear that more than one rectangle can be associated with a

given enclosing block (i.e., node). There are several ways of organizing these rectangles. Abel and Smith [1]

do not apply any ordering. This is equivalent to maintaining a linked list of the rectangles. Another approach,

devised by Kedem [5] (who used the term quad-CIF tree) is described below.

Let P be a quadtree node and let S be the set of rectangles that are associated with P. Members of S

are organized into two subsets according to their intersection (or the colinearity of their sides) with the lines

passing through the centroid of P’s block. We shall use the terms axes or axis lines to refer to these lines.

For example, consider node P whose block is of size 2 ·LX×2 ·LY and is centered at (CX,CY). All members

of S that intersect the line x = CX form one subset and all members of S that intersect the line y = CY

form the other subset. Equivalently, these subsets correspond to the rectangles intersecting the y and x axes,

respectively, passing through (CX,CY). If a rectangle intersects both axes (i.e., it contains the centroid of P’s

block), then we adopt the convention that it is stored with the subset associated with the y-axis.

These subsets are implemented as binary trees, which in actuality are one-dimensional analogs of the

MX-CIF quadtree. Thus rectangles are associated with their minimum enclosing one-dimensional x or y

intervals as is appropriate. For example, Figure G illustrates the binary trees associated with the x and y axes

passing through A, the root of the MX-CIF quadtree of Figure F The subdivision points of the axis lines are

shown by the tick marks in Figure F

Insertion and deletion of rectangles in an MX-CIF quadtree are described on pp. 468–469 in [9] and

in the solutions to the exercises on pp. 827–832 in [9]. The most common search query is one that seeks

to determine if a given rectangle overlaps (i.e., intersects) any of the existing rectangles. This operation is

a prerequisite to the successful insertion of a rectangle. Range queries can also be performed. However,

they are more usefully cast in terms of finding all the rectangles in a given area (i.e., a window query).

Another popular query is one that seeks to determine if one collection of rectangles can be overlaid on

another collection without any of the component rectangles intersecting one another.

The range and overlay operations can be implemented by using variants of algorithms developed for

handling set operations (i.e., union and intersection) in region-based quadtrees [4, 10]. In particular, the

range query is answered by intersecting the query rectangle with the MX-CIF quadtree. The overlay query

is answered by a two-step process. First, intersect the two MX-CIF quadtrees. If the result is empty, then

they can be safely overlaid and we merely need to perform a union of the two MX-CIF quadtrees. It should

be clear that Boolean queries can be easily handled. An example JAVA applet for the MX-CIF quadtree data

structure may be found on the web page of the class.

4 Assignment

This assignment has four parts. It is to be programmed in C++ o C. JAVA is not permitted. You are not

allowed to make use of any built in data structures from any library such as, but not limited to, STL in

C++. The first part is concerned with data structure selection. The second part requires the construction of a

command decoder. The third and fourth parts require that you implement a given set of operations. You are

strongly urged to read the the description of the MX-CIF quadtree [9].

6

The first part is to be turned in one week after this assignment has been distributed to you. It is worth

10 points. The second part is worth 15 points. It is to be turned in two weeks after this assignment has been

distributed to you. There will be NO late submissions accepted for these two parts of the assignment. While

doing parts one and two you are also to start thinking and coding the program necessary to implement the

operations. This should be done in such a way that the data structure is a BLACK BOX. Thus you need to

specify your primitives in such a way that they are independent of the data structure finally chosen. You

are strongly advised to begin implementing some of the operations. For example, you should implement an

output routine so that you can see whether your program is working properly. This will be done using a set

of drawing programs that we will provide for which you will be provided separate documentation.

For the third and fourth parts of the assignment, you are to write a C++ or C program to implement

the data structure and the specified operations. Together they are worth 175 points. Part three consists

of operations (1)–(9) given below. They are worth a total of 90 points, with varying point values for the

different operations. Part four consists of operations (10)–(14) given below. They are worth 85 points.

Operations (15)–(18) are for extra credit and are to be turned in with part four. They are worth up to 9 points

apiece.

In order to facilitate grading and your task, you are to use the data structure implementation that will

be given to you in class on the first meeting date after you turn in the first two parts of the assignment. For

any operation that is not implemented, say OP, your command decoder must output a message of the form

‘‘COMMAND OP IS NOT IMPLEMENTED’’.

We will assume that rectangles do not overlap although the MX-CIF quadtree data structure can deal

with such a situation. In order to lend some realism to your task you are to implement the MX-CIF quadtree

in a raster-based graphics environment. This means that you are dealing with a world of pixels. The size

of the world can be varied, and in our case is a 2w× 2w array of pixels such that each pixel corresponds to

a square of size 1× 1. Each pixel is referenced by the x and y coordinate values of its lower-left corner.

Therefore, the lower-left corner of the array (i.e., the origin) has coordinate values (0,0), and the pixel at

the upper-right corner of the array has coordinate values (2w− 1,2w− 1). As a default, we assume w = 7,

i.e., a pixel array of size 128× 128. All rectangles are of size i× j, where 3 ≤ i ≤ 2w and 3 ≤ j ≤ 2w. In

other words, the smallest rectangle is of size 3 by 3 and the largest is 2w× 2w. Note that the 1× 1 pixel

is the smallest unit into which our MX-CIF quadtree will decompose the underlying space from which the

rectangles are drawn.

In order to simplify the project and for optional operation (17) to be meaningful (i.e., LABEL for con-

nected component labeling), we stipulate that the centroids and the distances from the centroids to the

borders of the rectangles are integers. Therefore, all rectangles are of size 2i×2 j, where 1≤ i ≤ 2w−1 and

1 ≤ j ≤ 2w−1. In other words, the smallest rectangle is of size 2 by 2 and the largest is 2w× 2w. As we

pointed out, the rectangles are specified by the x and y coordinate values of their centroids, and the hori-

zontal and vertical distances from the centroids to their corresponding sides. The representation is further

simplified by assuming that the centroids of the rectangles are lower-left corners of pixels. In order to see

this, consider the rectangle specification having CX = 3, CY = 2, LX = 1, and LY = 2 as shown in Figure H.

It corresponds to a rectangle of size 2×4 with diagonally opposite corners at (2,0) and (3,3)—that is, these

are the pixels for which these points serve as the lower-left corners. Thus we see that this rectangle is 2

pixels wide and 4 pixels high and has an area of 8 pixels The centroid of this rectangle is at (3,2) which is

the lower-left corner of the corresponding pixel.

One class meeting date before the due date of each part of the project you will be informed of the

availability of and name of the test data file which you are to use in exercising your program for grading

purposes. You should also prepare your own test data. A sample file for this purpose will also be provided.

7

x

y

Figure H: Sample rectangle with at pixel boundaries having a centroid at (3,2) whose distance
to its horizontal and vertical boundaries is 1 and 2, respectively.

4.1 Data Structure Selection

You are to select a data structure to implement the MX-CIF quadtree. Turn in a definition in the form of a

set of C++ classes or C structs Again, you are not allowed to make use of any built in data structures from

any library such as, but not limited to, STL in C++. In doing this part of the assignment you should bear in

mind the type of data that is being represented and the type of operations that will be performed on it. In

order to ease your task, remember that the primitive entity is the rectangle. We specify a rectangle by giving

the x and y coordinate values of its centroid, and the horizontal and vertical distances from the centroid to its

borders. The rest of your task is to build on this entity adding any other information that is necessary. The

nature of the operations is described in Sections 4.3–4.5.

From the description of the operations you will see that a name is associated with each rectangle. Each

rectangle is assigned a unique name. At times, the operations are specified in terms of these names. Thus

you will also need a mechanism (i.e., a data structure) to efficiently keep track of the names of the rectangles

(i.e., to enable their retrieval, updates, etc.). It should be integrated with the data structure that keeps track

of the geometry of the rectangles.

4.2 Command Decoder

You are to turn in a working command decoder written in C++ or C for all the commands (including the

optional ones) given in Sections 4.3–4.5. You are not expected to do error recovery and can assume that the

commands are syntactically correct. All commands will fit on one line. Lengths of names are restricted to

6 characters or less and can be any combination of letters or digits (e.g., A, 1, 2A, B33, etc.). However, for

your own safety you may wish to incorporate some primitive error handling. Test data for this part of the

assignment will be found in a file specified by the Teaching Assistant.

The output for the command decoder consists of the number of the operation (e.g., “1” for command

INIT QUADTREE) and the actual values of the parameters if the command has any parameters (e.g., the value

of WIDTH for the INIT QUADTREE command).

8

4.3 Part Three: Basic Operations

In order to facilitate grading of these operations as well as the advanced and optional operations in Sec-

tions 4.4 and 4.5, respectively, please provide a trace output of the execution of the operations which lists

the nodes (both leaf and nonleaf) that have been visited while executing the operation. This trace is initiated

by the command TRACE ON and is terminated by the command TRACE OFF. In order for the trace output to

be concise, you are to represent each node of the MX-CIF quadtree that has been visited by a unique number

which is formed as follows. The root of the quadtree is assigned the number 0. Given a node with number

N, its NW, NE, SW ,and SE children are labeled 4 ·N + 1, 4 ·N + 2, 4 ·N + 3, and 4 ·N + 4, respectively. For

example, starting at the root, the NE child is numbered 2, while the SE child of the NW child of the root is

numbered 4*(4*0+1)+4=8. Since we also want to keep track of the nodes of the binary trees correspond-

ing to the one-dimensional MX-CIF quadtrees that have been visited, we need to be able to assign unique

numbers to them as well. The root of the binary tree is assigned the number 0. Given a node with number

N, its LEFT and RIGHT children are labeled 2 ·N + 1 and 2 ·N + 2, respectively. For example, starting at

the root, the right child is numbered 2, while the LEFT child of the RIGHT child of the root is numbered

2*(2*0+2)+1=5. In order to distinguish between nodes in the binary trees associated with the x and y axes

of the MX-CIF quadtree, we append the character ‘X’ and ’Y’, respectively to the number. The presence

of this additional character also serves to distinguish between nodes of the quadtree and those of the binary

trees.

(1) (20 points) Initialize the quadtree. The command INIT QUADTREE(WIDTH) is always the first com-

mand in the input stream. WIDTH determines the length of each side of the square are covered by the

quadtree. Each side has the length 2WIDTH. It also has the effect of starting with a fresh data set. This also

enables you to start working with a new rectangle collection. The initialization can also be invoked by

BUILD QUADTREE(WIDTH), which is followed by a tree representation. The format of the representation is

introduced in the set of course slides titled “Alternative Quadtree Representations” (slide ar6 where the label

is in the upper left corner) which is present in our class web page. Besides the initialization, you should also

be able to output the tree representation of the current MX-CIF quadtree, which is invoked by the operation

ARCHIVE QUADTREE(). Most importantly, it provides you with an MX-CIF quadtree that is correct in case

you are not able to build the MX-CIF quadtree correctly or to execute the most recent operation correctly.

In other words, ARCHIVE QUADTREE is the inverse of BUILD QUADTREE.

(2) (10 points) Generate a display of a 2WIDTH× 2WIDTH square from the MX-CIF quadtree. It is invoked by

the command DISPLAY(). To draw the MX-CIF quadtree, you are to use the drawing routines provide. In

particular, we provide you with an handout that describes their use, and the working of utilities SHOWQUAD

and PRINTQUAD, that can be used to render the output of your programs on a screen or a printer. A dashed

(broken) line should be used to draw quadrant lines, but the rectangles should be solid (i.e., not dashed).

Rectangle names should be output somewhere near the rectangle or within the rectangle. Along with the

name of a rectangle R, you should also print the node-number of the node containing R. When this conven-

tion causes the output of a quadrant line to coincide with the output of the boundary of a rectangle, then the

output of the rectangle takes precedence and the coincident part of the quadrant line is not output.

(3) (10 points) List the names of all of the rectangles in the database in lexicographical order. This means

that letters come before digits in the collating sequence. Similarly, shorter identifiers precede longer ones.

For example, a sorted list is A, AB, A3D, 3DA, 5. It is invoked by the command LIST RECTANGLES() and

yields for each rectangle its name, the x and y coordinate values of its centroid, and the horizontal and

vertical distances to its borders from the centroid. This is of use in interpreting the display since sometimes

it is not possible to distinguish the boundaries of the rectangles from the display. You should list the names

of all of the rectangles in the database whether or not they have been deleted. The output should consist of

several lines and each line should contain the name of just one rectangle.

9

(4) (5 points) Create a rectangle by specifying the coordinate values of its centroid and the distances from the

centroid to its borders, and assign it a name for subsequent use. Use CREATE RECTANGLE(N,CX,CY,LX,LY)

where N is the name to be associated with the rectangle, CX and CY are the x and y coordinate values,

respectively, of its centroid, and LX and LY are the horizontal and vertical distances, respectively, to its

borders from the centroid. CX, CY, LX, and LY are integer numbers (although it could also be a real number

in the more general case). However, as we pointed out earlier, in the case of this assignment, in order for

the optional operation (17) (i.e., LABEL for connected component labeling) to be meaningful, recall from

the introduction to Section 4 that we stipulate that the centroids and the distances from the centroids to the

borders of the rectangles are integers. Output an appropriate message indicating that the rectangle has been

created as well as its name and the x and y coordinate values of its centroid, and the horizontal and vertical

distances to its borders from the centroid. Note that any rectangle can be created — even if it is outside the

space spanned by the MX-CIF quadtree.

(5) (10 points) Given a point, return the name of the rectangle that contains it. It is invoked by the command

SEARCH POINT(PX,PY) where PX and PY are the x and y coordinate values, respectively, of the point. If no

such rectangle exists, then output a message indicating that the point is not contained in any of the rectangles.

(6) (10 points) Determine whether a query rectangle intersects (i.e., overlaps) any of the existing rectan-

gles. This operation is a prerequisite to the successful insertion of a rectangle in the MX-CIF quadtree.

It is invoked by the command RECTANGLE SEARCH(N) where N is a name of a rectangle. If the rectan-

gle does not intersect an existing rectangle, then RECTANGLE SEARCH returns a value of false and outputs

an appropriate message such as ‘‘N DOES NOT INTERSECT AN EXISTING RECTANGLE’’. Otherwise, it

returns the value true and uses the name associated with one of the intersecting rectangles (i.e., if it in-

tersects more than one rectangle) to output the following message: ‘‘N INTERSECTS RECTANGLE [NAME

OF RECTANGLE]’’ for each of the intersecting rectangles. Note that if an endpoint of the query rectangle

touches the endpoint of an existing rectangle, then RECTANGLE SEARCH returns false. You are only to check

against the rectangles that are in the MX-CIF quadtree of existing rectangles, and not the rectangles that

existed at some time in the past and have been deleted by the time this command is executed (i.e., in the

database of rectangles).

(7) (5 points) Insert a rectangle in the MX-CIF quadtree. If the rectangle intersects an existing rectangle,

then do not make the insertion and report this fact by returning the name of the intersecting rectangle. Also,

if any part of the rectangle is outside the space spanned by the MX-CIF quadtree, then do not make the

insertion and report this fact by a suitable message such as INSERTION OF RECTANGLE N FAILED AS N

LIES PARTIALLY OUTSIDE SPACE SPANNED BY MX-CIF QUADTREE. Otherwise, return the name of the

rectangle that is being inserted as well as output a message indicating that this has been done. It is invoked

by the command INSERT(N)where N is the name of a rectangle. It should be clear that the MX-CIF quadtree

is built by a sequence of CREATE RECTANGLE and INSERT operations.

Please note/recall our previously stated convention that the lower and left boundaries of each rectangle and

block are closed while the upper and right boundaries of each block are open. For example, this means that

when trying to insert rectangle r, once we have determined the minimum enclosing quadtree block b of r,

we then check if the left and/or bottom sides of r are coincident with the top and/or right sides of b. If this

is true, then associate r with the parent quadtree block c of b. In particular, r is associated with one of the

binary trees of c (these binary trees are one-dimensional MX-CIF quadtrees in the parlance of the book and

the assignment). Otherwise, r is associated with b.

(8) (15 points) Delete a rectangle or a set of rectangles from the MX-CIF quadtree. This operation has

two variants, DELETE RECTANGLE and DELETE POINT. The command DELETE RECTANGLE(N) deletes the

rectangle named N. It returns N if it was successful in deleting the specified rectangle and outputs a message

indicating it. Otherwise, it outputs an appropriate message. The command DELETE POINT(PX,PY) has as

10

its argument a point within the rectangle to be deleted whose x and y coordinate values are given by PX and

PY, respectively. DELETE POINT returns as its value the name of the rectangle that has been deleted and

prints an appropriate message indicating its name. If the point is not in any rectangle, then an appropriate

message indicating this is output. The code for DELETE POINT should make use of SEARCH POINT. Note

that rectangle N is only deleted from the MX-CIF quadtree and not from the database of rectangles.

(9) (5 points) Move a rectangle in the MX-CIF quadtree. The command is invoked by MOVE(N,CX,CY)

where N is the name of the rectangle, CX, CY are the translation of the centroid of N across the x and

y coordinate axes, and they must be integers The command returns N if it was successful in moving the

specified rectangle and outputs a message indicating it. Otherwise, output appropriate error messages if N

was not found in the MX-CIF quadtree, or if after the operation N lies outside the space spanned by the

MX-CIF quadtree. Note that the successful execution of the operation requires that the moved rectangle

does not overlap any of the existing rectangles in which case an appropriate error message is emitted.

4.4 Part Four: Advanced Operations

(10) (20 points) Determine all the rectangles in the MX-CIF quadtree that touch (i.e., are adjacent along

a side or a corner) a given rectangle. This operation is invoked by the command TOUCH(N) where N is

the name of a rectangle. Since rectangle N is referenced by name, N thus must be in the database for the

operation to work but it need not necessarily be in the MX-CIF quadtree. The command returns the names of

all the touched rectangles in conjunction with the following message ‘‘N SHARES ENDPOINT [X AND Y

COORDINATE VALUES OF ENDPOINT] WITH THE RECTANGLES [NAME OF RECTANGLES]’’. Otherwise,

the command returns NIL. For each rectangle r that touches N, display (i.e., highlight) the point in r for

which the x and y coordinate values are minimum (i.e., the lower-leftmost corner). It should be clear that

the intersection of r with N is empty.

(11) (20 points) Determine all of the rectangles in the MX-CIF quadtree that lie within a given distance of

a given rectangle. This is the so-called ‘lambda’ problem. Given a distance D (an integer here although it

could also be a real number in the more general case), it is invoked by the command WITHIN(N,D) where

N is the name of the query rectangle. In essence, this operation constructs a query rectangle Q with the same

centroid as N and distances LX+D and LY+D to the border. Now, the query returns the identity of all rectangles

whose intersection with the region formed by the difference of Q and N is not empty (i.e,, any rectangle r

that has at least one point in common with Q-N). In other words, we have a shell of width D around N and

we want all the rectangles that have a point in common with this shell. Rectangle N need not necessarily

be in the MX-CIF quadtree. Note that for this operation you must recursively traverse the tree to find the

rectangles that overlap the query region. You will NOT be given credit for a solution that uses neighbor

finding, such as one (but not limited to) that starts at the centroid of N and finds its neighbors in increasing

order of distance. This is the basis of another operation.

(12) (15 points) Find the nearest neighboring rectangle in the horizontal and vertical directions, respectively,

to a given rectangle. To locate a horizontal neighbor, use the command HORIZ NEIGHBOR(N) where N is

the name of the query rectangle. VERT NEIGHBOR(N) locates a vertical neighbor. By “nearest” horizontal

(vertical) neighboring rectangle, it is meant the rectangle whose vertical (horizontal) side, or extension,

is closest to a vertical (horizontal) side of the query rectangle. If the vertical (horizontal) extension of a

side of rectangle r causes the extended side of r to intersect the query rectangle, then r is deemed to be at

distance 0 and is thus not a candidate neighbor. In other words, the distance has to be greater than zero. The

commands return as their value the name of the neighboring rectangle if one exists and NIL otherwise as

well as an appropriate message. Rectangle N need not necessarily be in the MX-CIF quadtree. If more than

one rectangle is at the same distance, then return the name of just one of them.

11

(13) (15 points) Given a point, return the name of the nearest rectangle. By “nearest,” it is meant the rectangle

whose side or corner is closest to the point. Note that this rectangle could also be a rectangle that contains

the point. In this case, the distance is zero. It is invoked by the command NEAREST RECTANGLE(PX,PY)

where PX and PY are the x and y coordinate values, respectively, of the point. If no such rectangle exists

(e.g., when the tree is empty), then output an appropriate message (i.e., that the tree is empty). If more than

one rectangle is at the same distance, then return the name of just one of them.

(14) (15 points) Find all rectangles in a rectangular window anchored at a given point. It is invoked by the

command WINDOW(LLX,LLY,LX,LY)where LLX and LLY are the x and y coordinate values, respectively, of

the lower left corner of the window and LX and LY are the horizontal and vertical distances, respectively, to

its borders from the corner. Your output is a list of the names of the rectangles that are completely inside the

window, and a display of the MX-CIF quadtree that only shows the rectangles that are in the window. This

is similar to a clipping operation. Draw the boundary of the window using a dashed rectangle. Do not show

quadrant lines within the window. All arguments to WINDOW are integers (i.e., LX, LY LLX, and LLY). Note

that for this operation you must recursively traverse the tree to find the rectangles that overlap the query

region. You will NOT be given credit for a solution that uses neighbor finding, such as one (but not limited

to) that starts at the centroid of the window and finds its neighbors in increasing order of distance. This is

the basis of another operation.

4.5 Optional Operations

(15) (9 points) Find the nearest neighbor in all directions to the boundary of a given rectangle. It is invoked

by the command NEAREST NEIGHBOR(N) where N is the name of a rectangle. By “nearest,” it is meant

the rectangle C with a point on its side or corner, say P, such that the distance from P to a side or corner

of the query rectangle is a minimum. NEAREST NEIGHBOR returns as its value the name of the neighboring

rectangle if one exists and NIL otherwise as well as an appropriate message. Rectangle N need not necessarily

be in the MX-CIF quadtree. If more than one rectangle is at the same distance, then return the name of just

one of them. Note that rectangles that are inside N are not considered by this query.

(16) (9 points) Given a rectangle, find its nearest neighbor with a name that is lexicographically greater. It is

invoked by the command LEXICALLY GREATER NEAREST NEIGHBOR(N)where N is the name of a rectangle.

By “lexicographically greater nearest” it is meant the rectangle C whose name is lexicographically greater

than that of N with a point on C’s side, say P, such that the distance from P to a side of the query rectangle

is a minimum. LEXICALLY GREATER NEAREST NEIGHBOR returns as its value the name of the neighboring

rectangle if one exists and NIL otherwise as well as an appropriate message. Rectangle N need not necessarily

be in the MX-CIF quadtree. If more than one rectangle is at the same distance, then return the name of just

one of them. Note that rectangles that are inside N are not considered by this query. This operation should not

examine more than the minimum number of rectangles that are necessary to determine the lexicographically

greater nearest neighbor. Thus you should use an incremental nearest neighbor algorithm (e.g., [3] which is

described on pages 490–501 in [9]). Section 5.

(17) (9 points) Perform connected component labeling on the MX-CIF quadtree. This means that all touch-

ing rectangles are assigned the same label. By “touching,” it is meant that the rectangles are adjacent along

a side or a corner. This is accomplished by the command LABEL(). The result of the operation is a display

of the MX-CIF quadtree where all touching rectangles are shown with the same label. Use integer labels.

(18) (9 points) Given a pair of MX-CIF quadtrees, find the pairs of intersecting rectangles. This is accom-

plished by the command SPATIAL JOIN. The result of the operation is a list of all pairs of intersecting

rectangles of the form (A,B) where A and B are pairs of intersecting rectangles, one from the first set and

one from the second set, respectively.

12

5 Hints

In the following, we represent every point by its x and y coordinate values and every rectangle by a pair

of points (as opposed to our intended definition of center with length and width where you would compute

those points). For example, R = (p1, p2), is a rectangle with lower left corner at p1 = (x1,y1) and upper

right corner at p2 = (x2,y2).

Because we represent points by two dimensional vectors, we can define algebraic operations on points.

For example given two points p1 = (x1,y1) and p2 = (x2,y2), we can define p1 + p2 to be the point (x1 +
x2,y1 + y2). Similarly, we can define scalar multiplication (e.g. 5p1 = (5x1,5y1)), subtraction, etc. Given a

vector v = (x,y), we denote the length of the vector v by ||v|| which is given by ||v|| =
√

(x2 + y2). Notice

that for a point p = (x,y), ||p|| is the length of the vector from (0,0) to p.

• Comparing Points:

Let p1 = (x1,y1) and p2 = (x2,y2). We say p1 < p2 if and only if both x1 < x2 and y1 < y2. Similarly,

we say p1 ≤ p2 if and only if both x1 ≤ x2 and y1 ≤ y2. Note that based on this definition it is possible

that neither p1 ≤ p2 nor p2 ≤ p1 (e.g. consider the two points p1 = (0,1) and p2 = (1,0)).

• Inside:

Given a point p and a rectangle R = (p1, p2), the point p is inside R if and only if p1 ≤ p < p2.

• Min/Max:

Given two points p1 = (x1,y1) and p2 = (x2,y2), we define the min and max operations as follows:

min(p1, p2) = (min(x1,x2),min(y1,y2))

max(p1, p2) = (max(x1,x2),max(y1,y2))

Similarly, we can define the min and max for more that two points (e.g. max(p1, p2, · · · , pn)). In other

words, the minimum/maximum of several points is a point that has the minimum/maximum of their

coordinate values.

• Valid Rectangle:

Given a rectangle R = (p1, p2), we say a rectangle is valid if and only if p1 ≤ p2, otherwise the

rectangle R is invalid.

• Empty Rectangle:

A rectangle R = (p1, p2) is empty if and only if R is a valid rectangle and p1 < p2 is false. In other

words, R is a valid but empty rectangle if and only if p1 ≤ p2 is true but p1 < p2 is false.

• Intersection:

Given two rectangles R = (p1, p2) and R′ = (p′1, p′2), let p′′1 = max(p1, p′1) and p′′2 = min(p2, p′2).
Then R and R′ intersect if and only if the rectangle R′′ = (p′′1 , p′′2) is a valid and not empty rectangle.

In other words, they intersect if and only if p′′1 < p′′2 . If they do intersect then their intersection is given

by the rectangle R′′ defined above.

• Touch:

Given two rectangles R = (p1, p2) and R′ = (p′1, p′2), we say that R and R′ touch if their intersection

is a valid but empty rectangle. In other words: Let p′′1 = max(p1, p′1) and p′′2 = min(p2, p′2). Then R

and R′ touch if and only if p′′1 ≤ p′′2 is true but p′′1 < p′′2 is false.

13

• Rectangle Containment:

Given two rectangles R = (p1, p2) and R′ = (p′1, p′2), we say R′ is contained in R if and only if p1 ≤ p′1
and p′2 ≤ p2. This is also equivalent to saying R′ is contained in R if and only if the intersection of R′

and R is R′ itself.

• Point-Point Distance:

Given two points p1 = (x1,y1) and p2 = (x2,y2) let d = p1− p2 be their difference vector (i.e. the

vector connecting p1 to p2). The distance between p1 and p2 is given by ||d||. In other words the

distance between p1 and p2 is ||p1− p2|| which is
√

(x1− x2)2 +(y1− y2)2.

• Point-Rectangle Distance:

Given a point p and a rectangle R = (p1, p2), let d = max(p1− p, p− p2,(0,0)) be their difference

vector. Then, the distance between p and R is given by ||d||.

• Rectangle-Rectangle Distance:

Given two rectangles R = (p1, p2) and R′ = (p′1, p′2), let d = max(p1− p′2, p′1− p2,(0,0)) be their

difference vector. Then, the distance between R and R′ is given by ||d||.

• Horizontal Distance

The horizontal distance between two objects is defined as the distance between the projection of the

two objects on the X-axis. The projection of a rectangle R = ((x1,y1),(x2,y2)) on the X-axis is the

half-open interval [x1,x2). So, the horizontal distance between two rectangles is just the distance be-

tween their projections on the X-axis. So, given the rectangle R′ = ((x′1,y
′
1),(x

′
2,y
′
2)), we can compute

the horizontal distance of R and R′ by max(x1− x′2,x
′
1− x2). Notice that if the projections of R and R′

overlap then this distance could be negative.

• Vertical Distance

The vertical distance between two objects is defined as the distance between the projections of the

two objects on the Y-axis. This is defined similarly to the horizontal distance.

You will need to use a priority queue to implement some of the operation (i.e. HORIZ_NEIGHBOR,

VERT_NEIGHBOR,NEAREST_RECTANGLE,NEAREST_NEIGHBOR, and LEXICALLY_GREATER_NEAREST_NEIGHBOR).

The following is a pseudo-code which should give you an idea of how you should implement these opera-

tions. Note that the following may miss the details specific to each operation so you may need to modify it

or add to it to implement each operations correctly.

Notice that Q is a priority queue of quad-tree nodes in which nodes with shorter distance to the query

come first. If two nodes have the same distance to the query then the one with a lower quad-tree number

comes first. Also, notice that distance is defined based on the operation you are implementing. For each

specific operation you may need to check for other conditions. For example, if you are implementing the

VERT_NEIGHBOR then at line 1 you should also check that the image of p on the vertical axis is not entirely

contained in the image of the query on the vertical axis (because if it is so then p cannot possible contain

the solution). Similarly, at line 1 you should check that the image of r on the vertical axis does not overlap

the image of the query on the vertical axis (remember that this is for VERT_NEIGHBOR, for other operations

you need to check for other conditions).

14

Find Nearest (Object query);

Let Q be a priority queue of quad-tree nodes ;

min dist← ∞ ;

closest rect← null ;

Push the root of the quad-tree into Q ;

while Q is not empty do

p← pop the next quad-tree node from the head of Q ;

d← distance of p from the query;

if d < min dist then // You may need to check for other conditions too

if tracing is enabled then

print the quad-tree node number of p ;

if p is a gray node then

Push all of the child nodes of p into Q ;

else if p is a black node then

r← the rectangle in p ;

d′← distance of r from the query;

else if d′ < min dist then // Check other conditions too

min dist← d′ ;

closest rect← p ;

end

return closest rect ;

6 Sample Input Output

INPUT

INIT QUADTREE(5)

LIST RECTANGLES()

CREATE RECTANGLE(D,8,3,6,1)

CREATE RECTANGLE(A,24,16,2,2)

CREATE RECTANGLE(B,26,28,4,2)

CREATE RECTANGLE(C,11,8,1,1)

LIST RECTANGLES()

TRACE ON

INSERT(A)

INSERT(B)

INSERT(C)

INSERT(D)

SEARCH POINT(25,29)

SEARCH POINT(4,4)

RECTANGLE SEARCH(D)

DELETE RECTANGLE(A)

DELETE POINT(25,29)

INSERT RECTANGLE(D)

MOVE(D,-5,1)

TRACE OFF

15

OUTPUT

INIT QUADTREE(5): initialized a quadtree of width 32

LIST RECTANGLES() : listing 0 rectangles

CREATE RECTANGLE(D,8,3,6,1): created rectangle D

CREATE RECTANGLE(A,24,16,2,2): created rectangle A

CREATE RECTANGLE(B,26,28,4,2): created rectangle B

CREATE RECTANGLE(C,11,8,1,1): created rectangle C

LIST RECTANGLES(): listing 4 rectangles:

A 24 16 2 2

B 26 28 4 2

C 11 8 1 1

D 8 3 6 1

INSERT(A): inserted rectangle A

INSERT(B): inserted rectangle B

INSERT(C): inserted rectangle C

INSERT(D): failed: intersects with A

SEARCH POINT(25,29)[0 0X 2X 0Y 2 0X 0Y 2Y]: found rectangle B

SEARCH POINT(4,4)[0 0X 2X OY 3 0X 2X 0Y 15 0X 0Y]: no rectangle found

RECTANGLE SEARCH(D)[0 0X 2X]: found rectangle A

DELETE RECTANGLE(A): deleted rectangle A

DELETE POINT(25,29): deleted rectangle B

INSERT RECTANGLE(D): inserted rectangle D

MOVE(D,-5,1): rectangle D moved successfully

References

[1] D. J. Abel and J. L. Smith. A data structure and algorithm based on a linear key for a rectangle retrieval

problem. Computer Vision, Graphics, and Image Processing, 24(1):1–13, Oct. 1983.

[2] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on composite keys. Acta

Informatica, 4(1):1–9, 1974.

[3] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on Database

Systems, 24(2):265–318, June 1999. Also University of Maryland Computer Science Technical Report

TR–3919, July 1998.

[4] G. M. Hunter and K. Steiglitz. Operations on images using quad trees. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1(2):145–153, Apr. 1979.

[5] G. Kedem. The quad-CIF tree: a data structure for hierarchical on-line algorithms. In Proceedings of

the 19th Design Automation Conference, pages 352–357, Las Vegas, NV, June 1982. Also University

of Rochester Computer Science Technical Report TR–91, September 1981.

[6] A. Klinger. Patterns and search statistics. In J. S. Rustagi, editor, Optimizing Methods in Statistics,

pages 303–337. Academic Press, New York, 1971.

[7] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.

Addison-Wesley, Reading, MA, 1990.

16

[8] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.

[9] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan-Kaufmann, San

Francisco, 2006. (Translated to Chinese ISBN 978-7-302-22784-7).

[10] M. Shneier. Calculations of geometric properties using quadtrees. Computer Graphics and Image

Processing, 16(3):296–302, July 1981. Also University of Maryland Computer Science Technical

Report TR–770, May 1979.

17

	Region-Based Quadtrees
	MX Quadtrees
	MX-CIF Quadtrees
	Assignment
	Data Structure Selection
	Command Decoder
	Part Three: Basic Operations
	Part Four: Advanced Operations
	Optional Operations

	Hints
	Sample Input Output

