(** * RecordSub: Subtyping with Records *) (** In this chapter, we combine two significant extensions of the pure STLC -- records (from chapter [Records]) and subtyping (from chapter [Sub]) -- and explore their interactions. Most of the concepts have already been discussed in those chapters, so the presentation here is somewhat terse. We just comment where things are nonstandard. *) Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality". From Coq Require Import Strings.String. From PLF Require Import Maps. From PLF Require Import Smallstep. Module RecordSub. (* ################################################################# *) (** * Core Definitions *) (* ----------------------------------------------------------------- *) (** *** Syntax *) Inductive ty : Type := (* proper types *) | Ty_Top : ty | Ty_Base : string -> ty | Ty_Arrow : ty -> ty -> ty (* record types *) | Ty_RNil : ty | Ty_RCons : string -> ty -> ty -> ty. Inductive tm : Type := (* proper terms *) | tm_var : string -> tm | tm_app : tm -> tm -> tm | tm_abs : string -> ty -> tm -> tm | tm_rproj : tm -> string -> tm (* record terms *) | tm_rnil : tm | tm_rcons : string -> tm -> tm -> tm. Declare Custom Entry stlc. Declare Custom Entry stlc_ty. Notation "<{ e }>" := e (e custom stlc at level 99). Notation "<{{ e }}>" := e (e custom stlc_ty at level 99). Notation "( x )" := x (in custom stlc, x at level 99). Notation "( x )" := x (in custom stlc_ty, x at level 99). Notation "x" := x (in custom stlc at level 0, x constr at level 0). Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0). Notation "S -> T" := (Ty_Arrow S T) (in custom stlc_ty at level 50, right associativity). Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity). Notation "\ x : t , y" := (tm_abs x t y) (in custom stlc at level 90, x at level 99, t custom stlc_ty at level 99, y custom stlc at level 99, left associativity). Coercion tm_var : string >-> tm. Notation "{ x }" := x (in custom stlc at level 1, x constr). Notation "'Base' x" := (Ty_Base x) (in custom stlc_ty at level 0). Notation " l ':' t1 '::' t2" := (Ty_RCons l t1 t2) (in custom stlc_ty at level 3, right associativity). Notation " l := e1 '::' e2" := (tm_rcons l e1 e2) (in custom stlc at level 3, right associativity). Notation "'nil'" := (Ty_RNil) (in custom stlc_ty). Notation "'nil'" := (tm_rnil) (in custom stlc). Notation "o --> l" := (tm_rproj o l) (in custom stlc at level 0). Notation "'Top'" := (Ty_Top) (in custom stlc_ty at level 0). (* ----------------------------------------------------------------- *) (** *** Well-Formedness *) (** The syntax of terms and types is a bit too loose, in the sense that it admits things like a record type whose final "tail" is [Top] or some arrow type rather than [Nil]. To avoid such cases, it is useful to assume that all the record types and terms that we see will obey some simple well-formedness conditions. [An interesting technical question is whether the basic properties of the system -- progress and preservation -- remain true if we drop these conditions. I believe they do, and I would encourage motivated readers to try to check this by dropping the conditions from the definitions of typing and subtyping and adjusting the proofs in the rest of the chapter accordingly. This is not a trivial exercise (or I'd have done it!), but it should not involve changing the basic structure of the proofs. If someone does do it, please let me know. --BCP 5/16.] *) Inductive record_ty : ty -> Prop := | RTnil : record_ty <{{ nil }}> | RTcons : forall i T1 T2, record_ty <{{ i : T1 :: T2 }}>. Inductive record_tm : tm -> Prop := | rtnil : record_tm <{ nil }> | rtcons : forall i t1 t2, record_tm <{ i := t1 :: t2 }>. Inductive well_formed_ty : ty -> Prop := | wfTop : well_formed_ty <{{ Top }}> | wfBase : forall (i : string), well_formed_ty <{{ Base i }}> | wfArrow : forall T1 T2, well_formed_ty T1 -> well_formed_ty T2 -> well_formed_ty <{{ T1 -> T2 }}> | wfRNil : well_formed_ty <{{ nil }}> | wfRCons : forall i T1 T2, well_formed_ty T1 -> well_formed_ty T2 -> record_ty T2 -> well_formed_ty <{{ i : T1 :: T2 }}>. Hint Constructors record_ty record_tm well_formed_ty : core. (* ----------------------------------------------------------------- *) (** *** Substitution *) (** Substitution and reduction are as before. *) Reserved Notation "'[' x ':=' s ']' t" (in custom stlc at level 20, x constr). Fixpoint subst (x : string) (s : tm) (t : tm) : tm := match t with | tm_var y => if eqb_string x y then s else t | <{\y:T, t1}> => if eqb_string x y then t else <{\y:T, [x:=s] t1}> | <{t1 t2}> => <{([x:=s] t1) ([x:=s] t2)}> | <{ t1 --> i }> => <{ ( [x := s] t1) --> i }> | <{ nil }> => <{ nil }> | <{ i := t1 :: tr }> => <{ i := [x := s] t1 :: ( [x := s] tr) }> end where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc). (* ----------------------------------------------------------------- *) (** *** Reduction *) Inductive value : tm -> Prop := | v_abs : forall x T2 t1, value <{ \ x : T2, t1 }> | v_rnil : value <{ nil }> | v_rcons : forall i v1 vr, value v1 -> value vr -> value <{ i := v1 :: vr }>. Hint Constructors value : core. Fixpoint Tlookup (i:string) (Tr:ty) : option ty := match Tr with | <{{ i' : T :: Tr' }}> => if eqb_string i i' then Some T else Tlookup i Tr' | _ => None end. Fixpoint tlookup (i:string) (tr:tm) : option tm := match tr with | <{ i' := t :: tr' }> => if eqb_string i i' then Some t else tlookup i tr' | _ => None end. Reserved Notation "t '-->' t'" (at level 40). Inductive step : tm -> tm -> Prop := | ST_AppAbs : forall x T2 t1 v2, value v2 -> <{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }> | ST_App1 : forall t1 t1' t2, t1 --> t1' -> <{t1 t2}> --> <{t1' t2}> | ST_App2 : forall v1 t2 t2', value v1 -> t2 --> t2' -> <{v1 t2}> --> <{v1 t2'}> | ST_Proj1 : forall t1 t1' i, t1 --> t1' -> <{ t1 --> i }> --> <{ t1' --> i }> | ST_ProjRcd : forall tr i vi, value tr -> tlookup i tr = Some vi -> <{ tr --> i }> --> vi | ST_Rcd_Head : forall i t1 t1' tr2, t1 --> t1' -> <{ i := t1 :: tr2 }> --> <{ i := t1' :: tr2 }> | ST_Rcd_Tail : forall i v1 tr2 tr2', value v1 -> tr2 --> tr2' -> <{ i := v1 :: tr2 }> --> <{ i := v1 :: tr2' }> where "t '-->' t'" := (step t t'). Hint Constructors step : core. (* ################################################################# *) (** * Subtyping *) (** Now we come to the interesting part, where the features we've added start to interact. We begin by defining the subtyping relation and developing some of its important technical properties. *) (* ================================================================= *) (** ** Definition *) (** The definition of subtyping is essentially just what we sketched in the discussion of record subtyping in chapter [Sub], but we need to add well-formedness side conditions to some of the rules. Also, we replace the "n-ary" width, depth, and permutation subtyping rules by binary rules that deal with just the first field. *) Reserved Notation "T '<:' U" (at level 40). Inductive subtype : ty -> ty -> Prop := (* Subtyping between proper types *) | S_Refl : forall T, well_formed_ty T -> T <: T | S_Trans : forall S U T, S <: U -> U <: T -> S <: T | S_Top : forall S, well_formed_ty S -> S <: <{{ Top }}> | S_Arrow : forall S1 S2 T1 T2, T1 <: S1 -> S2 <: T2 -> <{{ S1 -> S2 }}> <: <{{ T1 -> T2 }}> (* Subtyping between record types *) | S_RcdWidth : forall i T1 T2, well_formed_ty <{{ i : T1 :: T2 }}> -> <{{ i : T1 :: T2 }}> <: <{{ nil }}> | S_RcdDepth : forall i S1 T1 Sr2 Tr2, S1 <: T1 -> Sr2 <: Tr2 -> record_ty Sr2 -> record_ty Tr2 -> <{{ i : S1 :: Sr2 }}> <: <{{ i : T1 :: Tr2 }}> | S_RcdPerm : forall i1 i2 T1 T2 Tr3, well_formed_ty <{{ i1 : T1 :: i2 : T2 :: Tr3 }}> -> i1 <> i2 -> <{{ i1 : T1 :: i2 : T2 :: Tr3 }}> <: <{{ i2 : T2 :: i1 : T1 :: Tr3 }}> where "T '<:' U" := (subtype T U). Hint Constructors subtype : core. (* ================================================================= *) (** ** Examples *) Module Examples. Open Scope string_scope. Notation x := "x". Notation y := "y". Notation z := "z". Notation j := "j". Notation k := "k". Notation i := "i". Notation A := <{{ Base "A" }}>. Notation B := <{{ Base "B" }}>. Notation C := <{{ Base "C" }}>. Definition TRcd_j := <{{ j : (B -> B) :: nil }}>. (* {j:B->B} *) Definition TRcd_kj := <{{ k : (A -> A) :: TRcd_j }}>. (* {k:C->C,j:B->B} *) Example subtyping_example_0 : <{{ C -> TRcd_kj }}> <: <{{ C -> nil }}>. Proof. apply S_Arrow. apply S_Refl. auto. unfold TRcd_kj, TRcd_j. apply S_RcdWidth; auto. Qed. (** The following facts are mostly easy to prove in Coq. To get full benefit, make sure you also understand how to prove them on paper! *) (** **** Exercise: 2 stars, standard (subtyping_example_1) *) Example subtyping_example_1 : TRcd_kj <: TRcd_j. (* {k:A->A,j:B->B} <: {j:B->B} *) Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 1 star, standard (subtyping_example_2) *) Example subtyping_example_2 : <{{ Top -> TRcd_kj }}> <: <{{ (C -> C) -> TRcd_j }}>. Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 1 star, standard (subtyping_example_3) *) Example subtyping_example_3 : <{{ nil -> (j : A :: nil) }}> <: <{{ (k : B :: nil) -> nil }}>. (* {}->{j:A} <: {k:B}->{} *) Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 2 stars, standard, optional (subtyping_example_4) *) Example subtyping_example_4 : <{{ x : A :: y : B :: z : C :: nil }}> <: <{{ z : C :: y : B :: x : A :: nil }}>. Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) End Examples. (* ================================================================= *) (** ** Properties of Subtyping *) (* ----------------------------------------------------------------- *) (** *** Well-Formedness *) (** To get started proving things about subtyping, we need a couple of technical lemmas that intuitively (1) allow us to extract the well-formedness assumptions embedded in subtyping derivations and (2) record the fact that fields of well-formed record types are themselves well-formed types. *) Lemma subtype__wf : forall S T, subtype S T -> well_formed_ty T /\ well_formed_ty S. Proof with eauto. intros S T Hsub. induction Hsub; intros; try (destruct IHHsub1; destruct IHHsub2)... - (* S_RcdPerm *) split... inversion H. subst. inversion H5... Qed. Lemma wf_rcd_lookup : forall i T Ti, well_formed_ty T -> Tlookup i T = Some Ti -> well_formed_ty Ti. Proof with eauto. intros i T. induction T; intros; try solve_by_invert. - (* RCons *) inversion H. subst. unfold Tlookup in H0. destruct (eqb_string i s)... inversion H0; subst... Qed. (* ----------------------------------------------------------------- *) (** *** Field Lookup *) (** The record matching lemmas get a little more complicated in the presence of subtyping, for two reasons. First, record types no longer necessarily describe the exact structure of the corresponding terms. And second, reasoning by induction on typing derivations becomes harder in general, because typing is no longer syntax directed. *) Lemma rcd_types_match : forall S T i Ti, subtype S T -> Tlookup i T = Some Ti -> exists Si, Tlookup i S = Some Si /\ subtype Si Ti. Proof with (eauto using wf_rcd_lookup). intros S T i Ti Hsub Hget. generalize dependent Ti. induction Hsub; intros Ti Hget; try solve_by_invert. - (* S_Refl *) exists Ti... - (* S_Trans *) destruct (IHHsub2 Ti) as [Ui Hui]... destruct Hui. destruct (IHHsub1 Ui) as [Si Hsi]... destruct Hsi. exists Si... - (* S_RcdDepth *) rename i0 into k. unfold Tlookup. unfold Tlookup in Hget. destruct (eqb_string i k)... + (* i = k -- we're looking up the first field *) inversion Hget. subst. exists S1... - (* S_RcdPerm *) exists Ti. split. + (* lookup *) unfold Tlookup. unfold Tlookup in Hget. destruct (eqb_stringP i i1)... * (* i = i1 -- we're looking up the first field *) destruct (eqb_stringP i i2)... (* i = i2 -- contradictory *) destruct H0. subst... + (* subtype *) inversion H. subst. inversion H5. subst... Qed. (** **** Exercise: 3 stars, standard, optional (rcd_types_match_informal) Write a careful informal proof of the [rcd_types_match] lemma. *) (* FILL IN HERE *) (* Do not modify the following line: *) Definition manual_grade_for_rcd_types_match_informal : option (nat*string) := None. (** [] *) (* ----------------------------------------------------------------- *) (** *** Inversion Lemmas *) (** **** Exercise: 3 stars, standard, optional (sub_inversion_arrow) *) Lemma sub_inversion_arrow : forall U V1 V2, U <: <{{ V1 -> V2 }}> -> exists U1 U2, (U= <{{ U1 -> U2 }}> ) /\ (V1 <: U1) /\ (U2 <: V2). Proof with eauto. intros U V1 V2 Hs. remember <{{ V1 -> V2 }}> as V. generalize dependent V2. generalize dependent V1. (* FILL IN HERE *) Admitted. (** [] *) (* ################################################################# *) (** * Typing *) Definition context := partial_map ty. Reserved Notation "Gamma '|-' t '\in' T" (at level 40, t custom stlc at level 99, T custom stlc_ty at level 0). Inductive has_type : context -> tm -> ty -> Prop := | T_Var : forall Gamma (x : string) T, Gamma x = Some T -> well_formed_ty T -> Gamma |- x \in T | T_Abs : forall Gamma x T11 T12 t12, well_formed_ty T11 -> (x |-> T11; Gamma) |- t12 \in T12 -> Gamma |- (\ x : T11, t12) \in (T11 -> T12) | T_App : forall T1 T2 Gamma t1 t2, Gamma |- t1 \in (T1 -> T2) -> Gamma |- t2 \in T1 -> Gamma |- t1 t2 \in T2 | T_Proj : forall Gamma i t T Ti, Gamma |- t \in T -> Tlookup i T = Some Ti -> Gamma |- t --> i \in Ti (* Subsumption *) | T_Sub : forall Gamma t S T, Gamma |- t \in S -> subtype S T -> Gamma |- t \in T (* Rules for record terms *) | T_RNil : forall Gamma, Gamma |- nil \in nil | T_RCons : forall Gamma i t T tr Tr, Gamma |- t \in T -> Gamma |- tr \in Tr -> record_ty Tr -> record_tm tr -> Gamma |- i := t :: tr \in (i : T :: Tr) where "Gamma '|-' t '\in' T" := (has_type Gamma t T). Hint Constructors has_type : core. (* ================================================================= *) (** ** Typing Examples *) Module Examples2. Import Examples. (** **** Exercise: 1 star, standard, optional (typing_example_0) *) Definition trcd_kj := <{ k := (\z : A, z) :: j := (\z : B, z) :: nil }>. Example typing_example_0 : empty |- trcd_kj \in TRcd_kj. (* empty |- {k=(\z:A.z), j=(\z:B.z)} : {k:A->A,j:B->B} *) Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 2 stars, standard, optional (typing_example_1) *) Example typing_example_1 : empty |- (\x : TRcd_j, x --> j) trcd_kj \in (B -> B). (* empty |- (\x:{k:A->A,j:B->B}. x.j) {k=(\z:A.z), j=(\z:B.z)} : B->B *) Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 2 stars, standard, optional (typing_example_2) *) Example typing_example_2 : empty |- (\ z : (C -> C) -> TRcd_j, (z (\ x : C, x) ) --> j ) ( \z : (C -> C), trcd_kj ) \in (B -> B). (* empty |- (\z:(C->C)->{j:B->B}. (z (\x:C.x)).j) (\z:C->C. {k=(\z:A.z), j=(\z:B.z)}) : B->B *) Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) End Examples2. (* ================================================================= *) (** ** Properties of Typing *) (* ----------------------------------------------------------------- *) (** *** Well-Formedness *) Lemma has_type__wf : forall Gamma t T, has_type Gamma t T -> well_formed_ty T. Proof with eauto. intros Gamma t T Htyp. induction Htyp... - (* T_App *) inversion IHHtyp1... - (* T_Proj *) eapply wf_rcd_lookup... - (* T_Sub *) apply subtype__wf in H. destruct H... Qed. Lemma step_preserves_record_tm : forall tr tr', record_tm tr -> tr --> tr' -> record_tm tr'. Proof. intros tr tr' Hrt Hstp. inversion Hrt; subst; inversion Hstp; subst; eauto. Qed. (* ----------------------------------------------------------------- *) (** *** Field Lookup *) Lemma lookup_field_in_value : forall v T i Ti, value v -> empty |- v \in T -> Tlookup i T = Some Ti -> exists vi, tlookup i v = Some vi /\ empty |- vi \in Ti. Proof with eauto. remember empty as Gamma. intros t T i Ti Hval Htyp. generalize dependent Ti. induction Htyp; intros; subst; try solve_by_invert. - (* T_Sub *) apply (rcd_types_match S) in H0... destruct H0 as [Si [HgetSi Hsub]]. eapply IHHtyp in HgetSi... destruct HgetSi as [vi [Hget Htyvi]]... - (* T_RCons *) simpl in H0. simpl. simpl in H1. destruct (eqb_string i i0). + (* i is first *) injection H1 as H1. subst. exists t... + (* i in tail *) eapply IHHtyp2 in H1... inversion Hval... Qed. (* ----------------------------------------------------------------- *) (** *** Progress *) (** **** Exercise: 3 stars, standard (canonical_forms_of_arrow_types) *) Lemma canonical_forms_of_arrow_types : forall Gamma s T1 T2, Gamma |- s \in (T1 -> T2) -> value s -> exists x S1 s2, s = <{ \ x : S1, s2 }>. Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) Theorem progress : forall t T, empty |- t \in T -> value t \/ exists t', t --> t'. Proof with eauto. intros t T Ht. remember empty as Gamma. revert HeqGamma. induction Ht; intros HeqGamma; subst... - (* T_Var *) inversion H. - (* T_App *) right. destruct IHHt1; subst... + (* t1 is a value *) destruct IHHt2; subst... * (* t2 is a value *) destruct (canonical_forms_of_arrow_types empty t1 T1 T2) as [x [S1 [t12 Heqt1]]]... subst. exists <{ [x:=t2] t12 }>... * (* t2 steps *) destruct H0 as [t2' Hstp]. exists <{ t1 t2' }> ... + (* t1 steps *) destruct H as [t1' Hstp]. exists <{ t1' t2 }>... - (* T_Proj *) right. destruct IHHt... + (* rcd is value *) destruct (lookup_field_in_value t T i Ti) as [t' [Hget Ht']]... + (* rcd_steps *) destruct H0 as [t' Hstp]. exists <{ t' --> i }>... - (* T_RCons *) destruct IHHt1... + (* head is a value *) destruct IHHt2... * (* tail steps *) right. destruct H2 as [tr' Hstp]. exists <{ i := t :: tr' }>... + (* head steps *) right. destruct H1 as [t' Hstp]. exists <{ i := t' :: tr}>... Qed. (** _Theorem_ : For any term [t] and type [T], if [empty |- t : T] then [t] is a value or [t --> t'] for some term [t']. _Proof_: Let [t] and [T] be given such that [empty |- t : T]. We proceed by induction on the given typing derivation. - The cases where the last step in the typing derivation is [T_Abs] or [T_RNil] are immediate because abstractions and [{}] are always values. The case for [T_Var] is vacuous because variables cannot be typed in the empty context. - If the last step in the typing derivation is by [T_App], then there are terms [t1] [t2] and types [T1] [T2] such that [t = t1 t2], [T = T2], [empty |- t1 : T1 -> T2] and [empty |- t2 : T1]. The induction hypotheses for these typing derivations yield that [t1] is a value or steps, and that [t2] is a value or steps. - Suppose [t1 --> t1'] for some term [t1']. Then [t1 t2 --> t1' t2] by [ST_App1]. - Otherwise [t1] is a value. - Suppose [t2 --> t2'] for some term [t2']. Then [t1 t2 --> t1 t2'] by rule [ST_App2] because [t1] is a value. - Otherwise, [t2] is a value. By Lemma [canonical_forms_for_arrow_types], [t1 = \x:S1.s2] for some [x], [S1], and [s2]. But then [(\x:S1.s2) t2 --> [x:=t2]s2] by [ST_AppAbs], since [t2] is a value. - If the last step of the derivation is by [T_Proj], then there are a term [tr], a type [Tr], and a label [i] such that [t = tr.i], [empty |- tr : Tr], and [Tlookup i Tr = Some T]. By the IH, either [tr] is a value or it steps. If [tr --> tr'] for some term [tr'], then [tr.i --> tr'.i] by rule [ST_Proj1]. If [tr] is a value, then Lemma [lookup_field_in_value] yields that there is a term [ti] such that [tlookup i tr = Some ti]. It follows that [tr.i --> ti] by rule [ST_ProjRcd]. - If the final step of the derivation is by [T_Sub], then there is a type [S] such that [S <: T] and [empty |- t : S]. The desired result is exactly the induction hypothesis for the typing subderivation. - If the final step of the derivation is by [T_RCons], then there exist some terms [t1] [tr], types [T1 Tr] and a label [t] such that [t = {i=t1, tr}], [T = {i:T1, Tr}], [record_ty tr], [record_tm Tr], [empty |- t1 : T1] and [empty |- tr : Tr]. The induction hypotheses for these typing derivations yield that [t1] is a value or steps, and that [tr] is a value or steps. We consider each case: - Suppose [t1 --> t1'] for some term [t1']. Then [{i=t1, tr} --> {i=t1', tr}] by rule [ST_Rcd_Head]. - Otherwise [t1] is a value. - Suppose [tr --> tr'] for some term [tr']. Then [{i=t1, tr} --> {i=t1, tr'}] by rule [ST_Rcd_Tail], since [t1] is a value. - Otherwise, [tr] is also a value. So, [{i=t1, tr}] is a value by [v_rcons]. *) (* ----------------------------------------------------------------- *) (** *** Inversion Lemma *) Lemma typing_inversion_abs : forall Gamma x S1 t2 T, Gamma |- \ x : S1, t2 \in T -> (exists S2, <{{ S1 -> S2 }}> <: T /\ (x |-> S1; Gamma) |- t2 \in S2). Proof with eauto. intros Gamma x S1 t2 T H. remember <{ \ x : S1, t2 }> as t. induction H; inversion Heqt; subst; intros; try solve_by_invert. - (* T_Abs *) assert (Hwf := has_type__wf _ _ _ H0). exists T12... - (* T_Sub *) destruct IHhas_type as [S2 [Hsub Hty]]... Qed. Lemma abs_arrow : forall x S1 s2 T1 T2, empty |- \x : S1, s2 \in (T1 -> T2) -> T1 <: S1 /\ (x |-> S1) |- s2 \in T2. Proof with eauto. intros x S1 s2 T1 T2 Hty. apply typing_inversion_abs in Hty. destruct Hty as [S2 [Hsub Hty]]. apply sub_inversion_arrow in Hsub. destruct Hsub as [U1 [U2 [Heq [Hsub1 Hsub2]]]]. inversion Heq; subst... Qed. (* ================================================================= *) (** ** Weakening *) (** The weakening lemma is proved as in pure STLC. *) Lemma weakening : forall Gamma Gamma' t T, inclusion Gamma Gamma' -> Gamma |- t \in T -> Gamma' |- t \in T. Proof. intros Gamma Gamma' t T H Ht. generalize dependent Gamma'. induction Ht; eauto using inclusion_update. Qed. Lemma weakening_empty : forall Gamma t T, empty |- t \in T -> Gamma |- t \in T. Proof. intros Gamma t T. eapply weakening. discriminate. Qed. (* ----------------------------------------------------------------- *) (** *** Preservation *) Lemma substitution_preserves_typing : forall Gamma x U t v T, (x |-> U ; Gamma) |- t \in T -> empty |- v \in U -> Gamma |- [x:=v]t \in T. Proof. Proof. intros Gamma x U t v T Ht Hv. remember (x |-> U; Gamma) as Gamma'. generalize dependent Gamma. induction Ht; intros Gamma' G; simpl; eauto. - (* T_Var *) rename x0 into y. destruct (eqb_stringP x y) as [Hxy|Hxy]; subst. + (* x = y *) rewrite update_eq in H. injection H as H. subst. apply weakening_empty. assumption. + (* x<>y *) apply T_Var; [|assumption]. rewrite update_neq in H; assumption. - (* T_Abs *) rename x0 into y. subst. destruct (eqb_stringP x y) as [Hxy|Hxy]; apply T_Abs; try assumption. + (* x=y *) subst. rewrite update_shadow in Ht. assumption. + (* x <> y *) subst. apply IHHt. rewrite update_permute; auto. - (* rcons *) (* <=== only new case compared to pure STLC *) apply T_RCons; eauto. inversion H0; subst; simpl; auto. Qed. Theorem preservation : forall t t' T, empty |- t \in T -> t --> t' -> empty |- t' \in T. Proof with eauto. intros t t' T HT. generalize dependent t'. remember empty as Gamma. induction HT; intros t' HE; subst; try solve [inversion HE; subst; eauto]. - (* T_App *) inversion HE; subst... + (* ST_AppAbs *) destruct (abs_arrow _ _ _ _ _ HT1) as [HA1 HA2]. apply substitution_preserves_typing with T0... - (* T_Proj *) inversion HE; subst... destruct (lookup_field_in_value _ _ _ _ H2 HT H) as [vi [Hget Hty]]. rewrite H4 in Hget. inversion Hget. subst... - (* T_RCons *) inversion HE; subst... eauto using step_preserves_record_tm. Qed. (** _Theorem_: If [t], [t'] are terms and [T] is a type such that [empty |- t : T] and [t --> t'], then [empty |- t' : T]. _Proof_: Let [t] and [T] be given such that [empty |- t : T]. We go by induction on the structure of this typing derivation, leaving [t'] general. Cases [T_Abs] and [T_RNil] are vacuous because abstractions and [{}] don't step. Case [T_Var] is vacuous as well, since the context is empty. - If the final step of the derivation is by [T_App], then there are terms [t1] [t2] and types [T1] [T2] such that [t = t1 t2], [T = T2], [empty |- t1 : T1 -> T2] and [empty |- t2 : T1]. By inspection of the definition of the step relation, there are three ways [t1 t2] can step. Cases [ST_App1] and [ST_App2] follow immediately by the induction hypotheses for the typing subderivations and a use of [T_App]. Suppose instead [t1 t2] steps by [ST_AppAbs]. Then [t1 = \x:S.t12] for some type [S] and term [t12], and [t' = [x:=t2]t12]. By Lemma [abs_arrow], we have [T1 <: S] and [x:S1 |- s2 : T2]. It then follows by lemma [substitution_preserves_typing] that [empty |- [x:=t2] t12 : T2] as desired. - If the final step of the derivation is by [T_Proj], then there is a term [tr], type [Tr] and label [i] such that [t = tr.i], [empty |- tr : Tr], and [Tlookup i Tr = Some T]. The IH for the typing derivation gives us that, for any term [tr'], if [tr --> tr'] then [empty |- tr' Tr]. Inspection of the definition of the step relation reveals that there are two ways a projection can step. Case [ST_Proj1] follows immediately by the IH. Instead suppose [tr --> i] steps by [ST_ProjRcd]. Then [tr] is a value and there is some term [vi] such that [tlookup i tr = Some vi] and [t' = vi]. But by lemma [lookup_field_in_value], [empty |- vi : Ti] as desired. - If the final step of the derivation is by [T_Sub], then there is a type [S] such that [S <: T] and [empty |- t : S]. The result is immediate by the induction hypothesis for the typing subderivation and an application of [T_Sub]. - If the final step of the derivation is by [T_RCons], then there exist some terms [t1] [tr], types [T1 Tr] and a label [t] such that [t = i:=t1 :: tr}], [T = i:T1 :: Tr], [record_ty tr], [record_tm Tr], [empty |- t1 : T1] and [empty |- tr : Tr]. By the definition of the step relation, [t] must have stepped by [ST_Rcd_Head] or [ST_Rcd_Tail]. In the first case, the result follows by the IH for [t1]'s typing derivation and [T_RCons]. In the second case, the result follows by the IH for [tr]'s typing derivation, [T_RCons], and a use of the [step_preserves_record_tm] lemma. *) End RecordSub. (* 2021-12-09 12:04 *)