
CMSC 754: Fall 2021 Dave Mount

CMSC 754: Short Reference Guide

This document contains a short summary of information about algorithm analysis and data
structures, which may be useful later in the semester.

Asymptotic Forms: The following gives both the formal “c and n0” definitions and an equivalent
limit definition for the standard asymptotic forms. Assume that f and g are nonnegative
functions.

Asymptotic Form Relationship Limit Form Formal Definition

f(n) ∈ Θ(g(n)) f(n) ≡ g(n) 0 < lim
n→∞

f(n)

g(n)
< ∞ ∃c1, c2, n0, ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n).

f(n) ∈ O(g(n)) f(n) � g(n) lim
n→∞

f(n)

g(n)
< ∞ ∃c, n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ Ω(g(n)) f(n) � g(n) lim
n→∞

f(n)

g(n)
> 0 ∃c, n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

f(n) ∈ o(g(n)) f(n) ≺ g(n) lim
n→∞

f(n)

g(n)
= 0 ∀c, ∃n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ ω(g(n)) f(n) ≻ g(n) lim
n→∞

f(n)

g(n)
= ∞ ∀c, ∃n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

Polylog-Polynomial-Exponential: For any constants a, b, and c, where b > 0 and c > 1.

loga n ≺ nb ≺ cn.

Common Summations: Let c be any constant, c 6= 1, and n ≥ 0.

Name of Series Formula Closed-Form Solution Asymptotic

Constant Series
∑

b

i=a
1 = max(b− a+ 1, 0) Θ(b− a)

Arithmetic Series
∑

n

i=0 i = 0 + 1 + 2 + · · ·+ n =
n(n+ 1)

2
Θ(n2)

Geometric Series
∑

n

i=0 c
i = 1 + c+ c2 + · · ·+ cn =

cn+1 − 1

c− 1

{

Θ(cn) (c > 1)
Θ(1) (c < 1)

Quadratic Series
∑

n

i=0 i
2 = 12 + 22 + · · ·+ n2 =

2n3 + 3n2 + n

6
Θ(n3)

Linear-geom. Series
∑

n−1
i=0 ici = c+ 2c2 + 3c3 · · ·+ ncn =

(n− 1)c(n+1) − ncn + c

(c− 1)2
Θ(ncn)

Harmonic Series

n
∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+

1

n
≈ lnn Θ(log n)

Recurrences: Recursive algorithms (especially those based on divide-and-conquer) can often be
analyzed using the so-called Master Theorem, which states that given constants a > 0, b > 1,
and d ≥ 0, the function T (n) = aT (n/b) +O(nd), has the following asymptotic form:

T (n) =

O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a.

Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let [m] denote
the set {0, . . . ,m}, and let [m]k denote the set of ordered k-tuples, where each element is taken
from [m]. A sorting algorithm is stable if it preserves the relative order of equal elements. A
sorting algorithm is in-place if it uses no additional array storage other than the input array
(although O(log n) additional space is allowed for the recursion stack). The comparison-based

algorithms (Insertion-, Merge-, Heap-, and QuickSort) operate under the general assumption
that there is a comparator function f(x, y) that takes two elements x and y and determines
whether x < y, x = y, or x > y.

Algorithm Domain Time Space Stable In-place

CountingSort Integers [m] O(n+m) O(n+m) Yes No

RadixSort Integers
[m]k or
[mk]

O(k(n+m)) O(kn+m) Yes No

InsertionSort Total order O(n2) O(n) Yes Yes

MergeSort
Total order O(n log n) O(n)

Yes No
HeapSort No Yes
QuickSort Yes/No∗ No/Yes

∗There are two versions of QuickSort, one which is stable but not in-place, and one which is
in-place but not stable.

Order statistics: For any k, 1 ≤ k ≤ n, the kth smallest element of a set of size n (over a totally
ordered domain) can be computed in O(n) time.

Useful Data Structures: All these data structures use O(n) space to store n objects.

Unordered Dictionary: (by randomized hashing) Insert, delete, and find in O(1) expected
time each. (Note that you can find an element exactly, but you cannot quickly find its
predecessor or successor.)

Ordered Dictionary: (by balanced binary trees or skiplists) Insert, delete, find, predeces-
sor, successor, merge, split in O(log n) time each. (Merge means combining the contents
of two dictionaries, where the elements of one dictionary are all smaller than the ele-
ments of the other. Split means splitting a dictionary into two about a given value x,
where one dictionary contains all the items less than or equal to x and the other contains
the items greater than x.) Given the location of an item x in the data structure, it is
possible to locate a given element y in time O(log k), where k is the number of elements
between x and y (inclusive).

Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease-key, increase-
key in O(log n) time. Find-min in O(1) time each. Make-heap from n keys in O(n) time.

Priority Queues: (by Fibonacci heaps) Any sequence of n insert, extract-min, union, decrease-
key can be done in O(1) amortized time each. (That is, the sequence takes O(n) total
time.) Extract-min and delete take O(log n) amortized time. Make-heap from n keys in
O(n) time.

Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint
sets and find the set containing an element in O(log n) time each. A sequence of m
operations can be done in O(α(m,n)) amortized time. That is, the entire sequence can
be done in O(m · α(m,n)) time. (α is the extremely slow growing inverse-Ackerman
function.)

Orientation Testing: For any constant dimension d, given any ordered (d + 1)-tuple of points
in R

d, it can be determined in O(1) time whether these points are (a) negatively oriented
(clockwise), (b) positively oriented (counterclockwise) or (c) affinely dependent (collinear).
This test can be applied for many other geometric predicates, such as determining whether
two given line segments in the plane intersect, whether a given point lies within a given
triangle, and whether a given point lies within the circumcircle of three other given points.
(This will be discussed later in the semester.)

CMSC 754: Fall 2021 Dave Mount

Homework 1: Hulls and Plane Sweep

Handed out Thursday, Sep 16. Due by the start of class on Thursday, Sep 23. (Submissions will
be through Gradescope. Submission information will be forthcoming.) Late homeworks are not
accepted (unless an extension has been prearranged) so please turn in whatever you have completed
by the due date. Unless otherwise specified, you may assume that all inputs are given in general

position.

Problem 1. Present an algorithm which, given a sequence P = 〈p1, . . . , pn〉 of n ≥ 3 points in
R
2, determines whether these points constitute the (distinct) sequence of vertices of a convex

polygon given either in clockwise or counterclockwise order. The output of your algorithm is
either “CW” (for a valid clockwise sequence), “CCW” (for a valid counterclockwise sequence),
or “invalid”.

Each point pi is given by its coordinates (xi, yi). For full credit, your algorithm should run
in O(n) time and should only involve orientation test between the points of P . (You can
receive 2/3 credit if you give a correct answer that involves other exact computations, such
as comparing two coordinates and/or orientation tests involving points that are not part of
the input set.)

For this problem, you may not assume general position. For example, three or more points
might be collinear, and there might be duplicate coordinate values.

Prove that your algorithm is correct and justify its running time. (If you are unsure whether
you need to prove a geometric assertion, feel free to check with me.)

CW

p1

p2

p3

p5

p4

p3

p2

p1

p4

CCW Not valid

p1

p4

p3

p2

p5

p4

p2

p1

p5

p3

p1

p2

p4

p3

p5

p6

Figure 1: Problem 1: Vertices of a convex polygon?

Problem 2. A popular programming exercise is called the skyline problem. You are given a set
of n axis-aligned rectangles, all having their bottom edge on the x-axis. The problem is to
compute the union of these rectangles, called the skyline.

The input is presented as a set of n triples (li, ri, hi), where li is x-coordinate of the ith
rectangle’s left side, ri is the x-coordinate of its right side, and hi is its height (see Fig. 2).
You may assume that all these values are positive reals.

The output consists of a run-length encoding of the horizontal edges of the boundary of the
union of these rectangles. This consists of a sequence of the form 〈(x1, h1), (x2, h2), . . . , (xm, hm)〉,
where xj is the start of the jth horizontal edge and hj is its distance above the x-axis (see
Fig. 2). The x values should increase monotonically (xj < xj+1), and consecutive heights

1

1 2 5 8 9 11 13 15 1 2 5 8 9 11 13 15

(1, 11, 2)6
7

2
3

0

6
7

2
3

0

(2, 5, 6)

(8, 9, 7)

(13, 15, 3)

Input: (1, 2)

(2, 6)

(5, 2)

(8, 7)

Output:

(9, 2)

(11, 0)

(13, 3)

(15, 0)

Figure 2: Problem 2: Skyline problem.

should be distinct (hj 6= hj+1). Each horizontal edge runs between xj and xj+1 at y = hj .
The first height value h1 must be nonzero, and the last height value hm must be zero.

Present an output sensitive algorithm for the skyline problem. For full credit, your algorithm
should run in time O(n logm), where m is the length of the output. (Note that O(n log n) is
easy, and there are many answers on the internet, so you won’t get much credit for such an
algorithm.)

As always, first explain your strategy, present your algorithm (in English or pseudocode),
prove its correctness, and derive its running time. The emphasis here is on getting the
desired running time.

Hint: To simplify your description, you may assume that you have access to the following
utility function for answering horizontal ray-shooting queries. (It’s implementation will be
left as an exercise.) Given a set of k vertical line segments, each with its lower endpoint on
the x-axis, and given a query point q = (qx, qy), find the first segment (if any) that is hit by a
horizontal ray shot to the right from q. (If not segment is hit, the query returns some special
value, like “no-hit”.) You may assume that, given any such set of segments in O(k log k) time
it is possible to build a data structure that can answer such queries in time O(log k).

q

Figure 3: Horizontal ray shooting.

Problem 3. You have m robots that move along a common 1-dimensional track that runs north
and south. Each robot provides you with its motion plan, which consists of a sequence of
k motion segments. Each motion segment is given by a pair of reals (∆, v), where ∆ > 0
denotes the duration of movement, and v is the robot’s speed during this time interval. A
positive speed indicates movement to the north and a negative speed indicates movement
to the south. For example, the segment (5,−13) means that the robot moves at 13 units
per second to the south for 5 seconds. During this segment, the robot has moved a total of
5 · 13 = 65 units of distance to the south.

The full motion of the ith robot is specified as a sequence of k such segments, 〈(∆i,1, vi,1), . . . , (∆i,k, vi,k)〉.
For example, for k = 3, given the sequence 〈(2, 5), (3,−2), (1, 4)〉, this robot will move at ve-

2

locity 5 for 2 seconds (moving 10 units north), then at velocity −2 for 3 seconds (moving 6
units to the south), and finally at velocity 4 for 1 second (moving 4 units north). Thus, over
the span of 6 seconds, this robot has moved a net distance of 10− 6 + 4 = 8 units north.

The input to your program consists of the starting positions 〈z1, . . . , zm〉 of the m robots
along the track, together with m motion plans, one for each robot, each of length k. Once a
robot reaches the end of its motion plan, it remains at its final position until all the robots
have stopped moving. Let n = km denote the entire size of the input.

Given this input, provide answers to the following questions:

(a) We say that two robots collide if they occupy the same location at the same time. As
a function of k and m, what is the maximum number of collisions that there might be
among a collection of m robots with k-element plans? Justify your answer. (For full
credit, give an exact bound. Partial credit will be given for an asymptotic bound.)

(b) Present an efficient algorithm which, given the starting positions and motion plans,
determines whether any of the robots ever collide. If there is a collision, your algorithm
should output the first time that any two robots collide and indicate the indices of these
two robots. If there are no collisions, indicate the closest that any two robots ever get
to one another in the course of the entire motion process. For full credit, your algorithm
should run in time O(n log n).

(c) Suppose that when robots collide, they simply pass through each other. Present an
efficient algorithm which, given the starting positions and motion plans, reports all the
collisions. Letting c denote the total number of collisions, your algorithm should run in
time O((c+ n) log n).

In all three cases, justify your algorithm’s correctness and derive its running time.

Problem 4. Given a simple polygon P with n vertices, recall that the addition of any diagonal
(an internal line segment joining two visible vertices of P) splits P into two simple polygons
with n1 and n2 vertices respectively, where n1 + n2 = n+ 2.

(a) Show that given any simple polygon P with n ≥ 4 there exists a diagonal that splits P
such that min(n1, n2) ≥ ⌊n/3⌋. (Hint: It may help to consider the dual graph of any
triangulation.)

(b) Show that the constant 1/3 is the best possible, in that for any c > 1/3, there exists
a polygon such that any diagonal chosen results in a split such that min(n1, n2) < cn.
(You can provide a drawing, but it should be clear how your drawing can be generalized
to all sufficiently large values of n.)

Challenge Problem 1: Present a solution to the horizontal ray-shooting problem stated in Prob-
lem 1. (Given a set of vertical line segments with their lower endpoints on the x-axis, deter-
mine the first segment hit by a horizontal ray shot to the right from any query point.)

Challenge Problem 2: Present an efficient algorithm which, given a set P = {p1, . . . , pn} of n
points on the integer grid, computes the polygon of minimum perimeter that encloses these
points, subject to the condition that the sides of this enclosure can be horizontal, vertical,
or sloped at ±45◦ (see Fig. 4). (Hint: O(n) time is possible, but O(n log n) time acceptable.

3

Prove that the enclosure produced by your algorithm has the minimum perimeter. Note that
there may generally be many enclosures with the same perimeter, and your algorithm may
output any of them.)

Figure 4: Minimum perimeter enclosure.

Some tips about writing algorithms: Throughout the semester, whenever you are asked to
present an “algorithm,” you should present three things: the algorithm, an informal proof of its
correctness, and a derivation of its running time. Remember that your description is intended
to be read by a human, not a compiler, so conciseness and clarity are preferred over technical
details. Unless otherwise stated, you may use any results from class, or results from any standard
textbook on algorithms and data structures. (If the source is from outside of class, you must cite
your sources.) Also, you may use results from geometry that: (1) have been mentioned in class,
(2) would be known to someone who knows basic geometry or linear algebra, or (3) is intuitively
obvious. If you are unsure, please feel free to check with me.

Giving careful and rigorous proofs can be quite cumbersome in geometry, and so you are en-
couraged to use intuition and give illustrations whenever appropriate. Beware, however, that a
poorly drawn figure can make certain erroneous hypotheses appear to be “obviously correct.”

Throughout the semester, unless otherwise stated, you may assume that input objects are in
general position. For example, you may assume that no two points have the same x-coordinate,
no three points are collinear, no four points are cocircular. Also, unless otherwise stated, you
may assume that any geometric primitive involving a constant number of objects each of constant
complexity can be computed in O(1) time.

4

CMSC 754: Fall 2021 Dave Mount

Homework 2: Duality, Linear Programming, and Point Location

Handed out Thursday, Oct 14. Due: 9:30am, Tuesday, Oct 26 (submission through Gradescope
as with Homework 1). No late homeworks will be accepted, so please turn in whatever you have
completed by the due date. Unless otherwise specified, you may assume that all inputs are given
in general position. Also, when asked to give an algorithm with running time O(f(n)), it is allowed
to give a randomized algorithm with expected running time O(f(n)).

Problem 1. Consider the two segments s1 = p1t1 and s2 = p2t2 shown in Fig. 1.

s1

s2

p2

p1

t2t1

Figure 1: Problem 1: Trapezoidal map and point location.

(a) Show the (final) trapezoidal map for these two segments, assuming the insertion order
〈s1, s2〉.

(b) Show the point-location data structure resulting from the construction given in class,
assuming the insertion order 〈s1, s2〉. (We will give partial credit if your data structure
works correctly, even though it does not match the construction given in class.)

Please follow the convention given in class for the node structure. (In particular, for
y-nodes, the left (resp., right) child corresponds to the region above (resp., below) the
segment.)

Problem 2. Euler’s formula is useful for computing the combinatorial properties of planar sub-
divisions. A planar graph (or more accurately, a cell complex) is a subdivision of the plane
into vertices (0-dimensional), edges (1-dimensional), and faces (2-dimensional). Let v, e, and
f denote the number of vertices, edges, and faces, respectively, in a given cell complex. (Note
that f includes the unbounded face that extends to infinity.) Euler’s formula states that these
quantities are related as

2 = v − e+ f

For example, in the Fig. 2(a) we show a triangulation of a set of v = 16 vertices with h = 10
vertices on the convex hull. In Fig. 2(b) we show a quadrilateral cell complex. Using Euler’s
formula, answer each of the following questions.

(a) Given a triangulation with v vertices, where h of these lie on the convex hull, use Euler’s
formula to derive the formula for the number of triangles t and the number of edges e in
the triangulation as functions of v and h. (Hints: Observe that 3t = 2e−h. This follows
because 3t counts the total number of edges incident to all the triangles, and this counts

1

v = 16

h = 10

(a) (b)

v = 16

h = 10

e = 35

t = 20

f = 21

e = 25

q = 10

f = 11

Figure 2: Problem 2: Applications of Euler’s formula.

every edge twice except the h edges that form the convex hull, which are only counted
once. Also observe that the number of faces is f = t + 1, because the infinite exterior
face is counted as a face.)

(b) Given a quadrangulation (a cell complex where each face has four edges, excluding the
face lying outside the convex hull) with v vertices, where h of these lie on the convex
hull, use Euler’s formula to derive the formula for the number of quadrangles q and the
number of edges e in the quadrangulation as functions of v and h.

(c) Explain why your answer to (b) implies that a quadrilateralization does not exist if the
number of hull vertices is odd.

Problem 3.

(a) You are given two sets of points, red and blue, in the plane. Let R = {r1, . . . , rn} be the
red points and B = {b1, . . . , bn} be the blue points. The problem is to determine a pair
of parallel, nonvertical lines ℓR and ℓB such that all the points of R lie on or above ℓR,
all the points of B lie on or below ℓB, and the signed vertical distance from ℓB to ℓR is
as large as possible. (More formally, if yB and yR are the y-intercepts of these lines, we
want to maximize yR − yB.)

Note that if ℓR lies above ℓB, this distance is positive and if (as shown in the figure
below) ℓR is below ℓB, this distance is negative. (When negative, the objective is to
minmize the absolute value of the distance.) Present an O(n) time algorithm to solve
this problem. (Hint: Reduce to linear programming.)

(b) You are given a convex polygon K in R
2, presented by its vertices in counterclockwise

order 〈v1, . . . , vk〉. We assume that the origin is contained in K’s interior (see Fig. 3(b)).
Given a positive real scalar α and a translation vector t = (tx, ty), let t + αK denote
the convex polygon that arises by scaling all the vertices of K uniformly by a factor of
α (about the origin) and then translating them by vector t (see Fig. 3(c)). Such a body
is called a homothet of K of scale α.

Present an algorithm, which given a convex polygon K (as described above) and an
n-element point set P = {p1, . . . , pn} in R

2, computes the homothet of K of smallest
(positive) scale that contains all the points of P . This can be solved in O(kn) time.

Hint: The reduction to LP involves multiple steps. Here are some suggestions:

(i) Explain how to express K as the intersection of k halfplanes {h1, . . . , hk}.

(ii) Consider any halfplane h = {(x, y) | ax + by ≤ c}, and let h′ = t + αh denote
the halfplane that arises by scaling the points of h by α (about the origin) and

2

∈ R

∈ B

(a)

K

αK + t

t

(b)

ℓB

ℓR

v1

v2
v3

v4
K

v1

v2
v3

v4

Figure 3: Problem 3: (a) Separating point sets and (b) enclosing points by a polygonal shape.

translating by the vector t. Given a point p = (px, py). Prove that p ∈ h′, if and
only if

a
px − tx

α
+ b

py − ty
α

≤ c.

(iii) Use (i) and (ii) to obtain an O(kn) time algorithm that computes the minimum-scale
homothet of K enclosing P .

Since we have not done any examples of linear programming applications in class, here is
simple example of how to answer one of these problems.

Sample Problem: Present an O(n) time algorithm, which given two sets of points R =
{r1, . . . , rn} and B = {b1, . . . , bn}, both in R

3, determines whether their exists a plane
h in R

3 such that all the points of R lie on or above h and all the points of B lie on or
below h.

Sample solution: We reduce the problem to linear programming in R
3. Let’s assume that

each ri ∈ R is given in coordinate form as (ri,x, ri,y, ri,z) and similarly for B. Let’s model
h by the equation z = ax + dy + e, for some real parameters a, d, and e. To enforce
the condition that each ri lies on or above h and each bj lies on or below it, we add the
constraints

ri,z ≥ ari,x + dri,y + e, for 1 ≤ i ≤ n

bj,z ≤ abj,x + dbj,y + e, for 1 ≤ j ≤ n.

We then invoke LP with 2n constraints in R
3 (with the variables (a, d, e)). Since this

is a yes-no answer, we don’t really care about the objective function. We can set it
arbitrarily, for example, “maximize e” (which is equivalent to using the objective vector
c = (0, 0, 1)).

We interpret the LP’s result as follows. If the result is “infeasible”, then we know that no
such plane exists. If the answer is “feasible” or “unbounded”, then we assert that such
a plane exists (assuming general position). This is clearly true if the result is “feasible”,

3

since we can just take h to be the plane associated with the optimum vertex (a, d, e).
If the result is “unbounded”, then the plane is vertical, but there exists a perturbation
such that R lies above and B lies below.

Problem 4. The objective of this problem is to explore some interesting properties of trapezoidal
maps (which apply more generally to many geometric structures). Throughout this problem,
S = {s1, . . . , sn} denotes a set of n nonintersecting, nonvertical line segments in the plane.
Let T (S) denote the trapezoidal map of these segments. We say that a trapezoid ∆ ∈ T (S)
is incident on a segment s ∈ S if s borders ∆ from above or below, or if one of s’s endpoints
bounds ∆ from the left or the right (see Fig. 2(a)). For s ∈ S, define deg(s) to be the number
of trapezoids of T (S) that are incident on s (in Fig. 4(a), deg(s) = 7).

(a) (b)

s

Trapezoids incident on s and incident trapezoids
Independent set of segments

Figure 4: Problem 4: Independent sets in a trapezoidal map.

(a) Given any set S of n segments, prove that there exists a constant c, such that, for all
sufficiently large n,

∑
s∈S deg(s) ≤ cn.

(b) Let c be the constant derived in your solution to (a). We say that a segment s ∈ S is
long if deg(s) ≥ 2c, and otherwise we say that s is short. Let S′ ⊆ S be the set of short
segments of S. Prove that there exists a constant c′ (which may depend on c) such that,
for all sufficiently large n, |S′| ≥ n/c′.

(c) We say that two segments si, sj ∈ S are adjacent if there exists a trapezoid ∆ ∈ T (S)
that is incident on both si and sj . Define an independent set of S to be a subset of S
whose elements are pairwise non-adjacent (see Fig. 4(b)). Given the previous constants
c and c′, prove that there exists a constant c′′ > 1 (depending on c and c′) such that,
for all sufficiently large n, S contains an independent set of size at least n/c′′ consisting
entirely of short segments. (Hint: Use a greedy approach.)

You might wonder why we care about independent sets at all. The existence of large indepen-
dent sets is of critical to the efficiency of many algorithms based on divide-and-conquer. The
idea is to find a large independent set, remove it, and solve the problem recursively on the
remaining objects. (Since the number of remaining objects decreases by a constant factor,
these total time for all these recursive calls will be small.) When the recursion returns, add
back the elements of the independent set, and solve the problem. Since the various pieces are

4

independent of each other, the solutions of these independent subproblems will not interact
with each other.

Problem 5. You are given two vertical lines at x = 0 and x = 1 and a set of n (nonvertical) line
segments, si = aibi. The left endpoint ai of each segment lies on a vertical line x = 0 and the
right endpoint bi lies on the vertical line x = 1 (see Fig. 5(a)). Scanning from left to right,
whenever two segments intersect, the segment with the lower slope “terminates” and the one
with the higher slope continues on (see Fig. 5(b)). Let us also add an imaginary “sentinel
segment” s0 that runs along the right vertical line.

Observe that for 1 ≤ i ≤ n, every segment si is terminated by some other segment. If the
segment survives to the right side, then it is terminated by segment 0. (For example, in
Fig. 5(b), segment 1 is terminated by segment 2, segments 2, 3, and 4 are all terminated by
segment 5, segment 5 is terminated by ∞, and so on.)

a8

a7

a6
a5

a4

a3
a2

a1

b6

b3

b4

b1

b7

b2

b8

b5

a8

a7

a6
a5

a4

a3
a2

a1

b6

b3

b4

b1

b7

b2

b8

b5

(a) (b)

2
5

5

7

5

8

0

0

x = 0 x = 1 x = 0 x = 1

(c) (d)

s s

a

b

Figure 5: Problem 5(a) and (b): Terminating segments

(a) Assuming that the segments are given in sorted order according to their left endpoints
(say, from top to bottom as shown in our figure), present an efficient algorithm that
determines the n-element list of the indices of the segment terminators. (For example,
for the input shown in the figure, the output would be 〈2, 5, 5, 5, 0, 7, 8, 0〉.) Hint: O(n)
time is possible.

(b) Suppose that we instead insert the segments in random order. A new segment s = ab
runs from left to right until it is terminated by the first segment of higher slope that it
intersects. In addition all the segments from the existing structure of lower slope that
intersect s are now terminated by s. (For example, the blue segment s in Fig. 5(c) and
(d) changes the termination points of three existing segments, as indicated by the red
arrows.)

Prove that there exists a constant c such that, if the segments are inserted in random
order, the expected number of existing segments that change their termination point is
at most c. (Hint: Apply a backwards analysis.)

(c) Recall that in Graham’s scan, we computed the upper hull of a set of points by adding
the points in left-to-right order. Whenever a point pi was added, we determined the

5

point pj of tangency with respect to the current upper hull, and we added the edge pipj .
We removed all points that were “shadowed” by the newly added edge. If you look at
the entire history of edges generated by Graham’s scan, you obtain a tree-like structure,
as shown in Fig. 6 below.

p1

p2

p3
p4

p5 pn

pi
pj

Figure 6: Problem 5(c): Graham’s scan history

Prove that there is a equivalency between the tree-like structures of Fig. 5(b) and
Graham-scan structure from Fig. 6. In particular, given any set of points P = {p1, . . . , pn}
in the plane, explain how to map these to a set of segments S = {s1, . . . , sn} such that
the edge pipj is added by Graham’s scan if and only if segment si is terminated by
segment sj .

Hint: This will involve some form of point-line duality, but you may need to modify
the duality transformation given in class. It may also be necessary to change the x-
coordinates associated with the left and right sides of the vertical band in the segment-
termination problem, even so far as to take the limit as they tend to infinity.

Problem 6. You are given a collection of n nonintersecting circular disks in the plane, each of
unit radius. Let P = {p1, . . . , pn} denote their center points. Preprocess these disks into a
data structure to answer the following queries. Given a unit disk qi (designated by its center
point), determine whether it is possible for this disk to escape from the others, meaning that
it is possible to move this disk arbitrarily far away from the others without intersecting or
moving any of the disks of P .

q1

q2

Figure 7: Problem 6. Disk q1 can escape while q2 cannot.

For example, given the disks in Fig. 7, the disk q1 can escape from the others, while q2 cannot.
Present an O(n log n) that constructs such a data structure. Your data structure should have
space O(n) and should be able to answer queries in time O(log n). (Hint: Use Voronoi
diagrams and point location.)

6

Challenge Problem. (Challenge problems count for extra credit points. These additional points
are factored in only after the final cutoffs have been set, and can only increase your final
grade.)

Present a randomized incremental algorithm for structure described in Problem 5(b). (In
5(b) you were asked just to show that the expected number of changes is O(1). Here you
must compute those changes and update the structure.)

Assume that your input is given as a collection of segments S = {s1, . . . , sn}, where the
endpoints lie on the vertical lines x = 0 and x = 1. Randomly permute segments and insert
them one-by-one into the tree structure described in the problem. The aim is to produce the
final structure in expected time O(n log n).

You may create any additional auxiliary structures you like in order to help achieve the desired
running time.

Prove the correctness of your algorithm and derive its expected running time.

7

CMSC 754: Fall 2021 Dave Mount

Sample Problems for the Midterm Exam

The midterm exam will be this Thursday, Oct 28 in class. It will be closed-book and closed-

notes, but you may use one sheet of notes (front and back).
Unless otherwise stated, you may assume general position. If you are asked to present an

O(f(n)) time algorithm, you may present a randomized algorithm whose expected running time is
O(f(n)). For each algorithm you give, derive its running time and justify its correctness.

Disclaimer: The following sample problems have been collected from old homeworks and
exams. Because the material and order of coverage varies each semester, these problems do not

necessarily reflect the actual length, coverage, or difficulty of the midterm exam.

Problem 0. Expect a problem asking you to work through all or part of an algorithm that was
presented in class on a specific example.

Problem 1. Give a short answer to each question (a few sentences suffice).

(a) Explain how to use at most three orientation tests to determine whether a point d lies
within the interior of a triangle △abc in the plane. You do not know whether △abc is
oriented clockwise or counterclockwise (but you may assume that the three points are
not collinear).

(b) Let P be a simple polygon with n sides, where n is a large number. As a function of
n, what is the maximum number of scan reflex vertices that it might have? Draw an
example to illustrate.

(c) A convex polygon P1 is enclosed within another convex polygon P2 (see Fig. 1(a)).
Suppose you dualize the vertices of each of these polygons (using the dual transform
given in class, where the point (a, b) is mapped to the dual line y = ax− b). What can
be said (if anything) about the relationships between the resulting two sets of dual lines.

P2

P1

(a) (b)

Figure 1: Problems 1(d) and 1(e).

(d) Any triangulation of any n-sided simple polygon has exactly n − 2 triangles. Suppose
that the polygon has h polygonal holes each having k sides. (In Fig. 1(b), n = 10, h = 2,
and k = 4). As a function of n, h and k, how many triangles will such a triangulation
have? Explain briefly.

1

(e) What was the importance of the Zone Theorem in our incremental algorithm for building
line arrangements in the plane?

(f) Consider the linear-programming algorithm given in class for n constraints in dimension
2. In class we showed that the expected-case running time of the algorithm is O(n).
What is the worst-case running time of the algorithm? Briefly justify your answer (in a
sentence or two).

(g) It is a fact that if P is a uniformly distributed random set of n points in a circular disk
in the plane, the expected number of vertices of P ’s convex hull is Θ(n1/3). That is, the
lower and upper bounds are both within some constant of n1/3 for large n.

What is the average-case running time of Jarvis’s algorithm for such an input? (If you
forgot the running time of Jarvis’s algorithm, we will give it to you for a 50% penalty
on this problem.)

(h) Given a set P of n points in the plane, what is the maximum number of edges in P ’s
Voronoi diagram? (For full credit, express your answer up to an additive constant.)

(i) When the ith site is added to the Delaunay triangulation using the randomized incre-
mental algorithm, what is the worst-case number of edges that can be incident on the
newly added site? What can you say about the expected-case number of such edges
(assuming that points are inserted in random order)?

(j) An arrangement of n lines in the plane has exactly n2 edges. How many edges are there
in an arrangement of n planes in 3-dimensional space? (Give an exact answer for full
credit or an asymptotically tight answer for half credit.) Explain briefly.

Problem 2. For this problem give an exact bound for full credit and an asymptotic (big-Oh)
bound for partial credit. Assume general position.

(a) You are given a convex polygon P in the plane having nP sides and an x-monotone
polygonal chain Q having nQ sides (see Fig. 2(a)). What is the maximum number of
intersections that might occur between the edges of these two polygons?

(b) Same as (a), but P and Q are both polygonal chains that are monotone with respect to
the x-axis (see Fig. 2(b)).

(a)

P

Q

Q

P

(b)

Figure 2: Maximum number of intersections.

(c) Same as (b), but P and Q are both monotone polygonal chains, but they may be
monotone with respect to two different directions.

Problem 3. A simple polygon P is star-shaped if there is a point q in the interior of P such
that for each point p on the boundary of P , the open line segment qp lies entirely within

2

the interior of P (see Fig. 3). Suppose that P is given as a counterclockwise sequence of its
vertices 〈v1, v2, . . . , vn〉. Show that it is possible to determine whether P is star-shaped in
O(n) time. (Note: You are not given the point q.) Prove the correctness of your algorithm.

P P

q

Figure 3: Determining whether a polygon is star-shaped.

Problem 4. A slab is the region lying between two parallel lines. You are given a set of n slabs,
where each is of vertical width 1 (see Fig. 4). Define the depth of a point to be the number
of slabs that contain it. The objective is to determine the maximum depth of the slabs using
plane sweep. (For example, in Fig. 4 the maximum depth is 3, as realized by the small
triangular face in the middle.)

1

1

1

1

1

1

1 1

1

2

2

2

2

2

1

3

0

0

0

0
0

0

0

0

p1

p2

p4

p3

q1

q4

q2

q3

1

x0 x1

Figure 4: Maximum depth in a set of slabs.

We assume that the slabs lie between two parallel lines at x = x0 and x = x1. The ith slab is
identified by the segment piqi that forms its upper side (and the lower side is one unit below
this). Let I denote the number of intersections between the line segments (both upper and
lower) that bound the slabs. Present an O((n + m) log n)-time algorithm to determine the
maximum depth. (Hint: Use plane-sweep.)

Problem 5. Consider the following randomized incremental algorithm, which computes the small-
est rectangle (with sides parallel to the axes) bounding a set of points in the plane. This
rectangle is represented by its lower-left point, low, and the upper-right point, high.

(1) Let P = {p1, p2, . . . , pn} be a random permutation of the points.

(2) Let low[x] = high[x] = p1[x]. Let low[y] = high[y] = p1[y].

(3) For i = 2 through n do:

3

(a) if pi[x] < low[x] then (∗) low[x] = pi[x].

(b) if pi[y] < low[y] then (∗) low[y] = pi[y].

(c) if pi[x] > high[x] then (∗) high[x] = pi[x].

(d) if pi[y] > high[y] then (∗) high[y] = pi[y].

Clearly this algorithm runs in O(n) time. Prove that the total number of times that the
“then” clauses of statements 3(a)–(d) (each indicated with a (∗)) are executed is O(log n) on
average. (We are averaging over all possible random permutations of the points.) To simplify
your analysis you may assume that no two points have the same x- or y-coordinates.

Problem 6. You are given a set of n vertical line segments in the plane S = {s1, . . . , sn}, where
each segment si is described by three values, its x-coordinate xi, its upper y-coordinate y+i
and its lower y-coordinate y−i . Present an efficient an algorithm to determine whether there
exists a line ℓ : y = ax + b that intersects all of these segments (see Fig. 5). Such a line is
called a transversal. (Hint: O(n) time is possible.) Justify your algorithm’s correctness and
derive its running time.

xi

y−i

y+i

ℓ : y = ax + b

Figure 5: Existence of a transversal.

Problem 7. You are given three n-element point sets in R
2, R = {r1, . . . , rn}, called red, G =

{g1, . . . , gn}, called green, and P = {p1, . . . , pn}, called purple. For each of the following
two problems, present a reduction to linear programming in a space of constant dimension.
Indicate which variables are used in the LP formulation, what the constraints are, and what
the objective function is. Indicate what to do if the LP returns an answer that is infeasible
or unbounded (if that is possible).

(a) A (linear) slab is a region of the plane bounded by two parallel lines, y = ax + b+ and
y = ax + b−. Given R, G, and P , compute the slab (if it exists) of minimum vertical
height such that all the points of R lie strictly above the slab, all the points of G lie
within the slab, and all the points of P lie strictly below the slab (see Fig. 6(a)). If no
such slab exists, you should detect and report this.

(b) A parabolic slab is the region of the plane bounded between two “parallel” parabolas,
y = ax2 + bx + c+ and y = ax2 + bx + c−. Given R, G, and P , compute the parabolic
slab of minimum vertical distance such that all the points of R lie strictly above the
slab, all the points of G lie within the slab, and all the points of P lie strictly below the
slab (see Fig. 6(b)). If no such parabolic slab exists, you should detect and report this.

4

(a) (b)

y = ax + b+

y = ax + b−

y = ax2 + bx + c+

y = ax2 + bx + c−

Figure 6: Linear and parabolic slabs.

Problem 8. You are given two sets of points in the plane, the red set R containing nr points and
the blue set B containing nb points. The total number of points in both sets is n = nr + nb.
Give an O(n) time algorithm to determine whether the convex hull of the red set intersects
the convex hull of the blue set. If one hull is nested within the other, then we consider them
to intersect. (Hint: It may be easier to consider the question in its inverse form, do the convex
hulls not intersect.)

Problem 9. Given a set of n points P in the plane, we define a subdivision of the plane into
rectangular regions by the following rule. We assume that all the points are contained within
a bounding rectangle. Imagine that the points are sorted in increasing order of y-coordinate.
For each point in this order, shoot a bullet to the left, to the right and up until it hits
an existing segment, and then add these three bullet-path segments to the subdivision (see
Fig. 7(a)).

new point

segments trimmedsegments trimmed

(a) (b)

Figure 7: Building a subdivision.

(a) Show that the resulting subdivision has size O(n) (including vertices, edges, and faces).

(b) Describe an algorithm to add a new point to the subdivision and restore the proper
subdivision structure. Note that the new point may have an arbitrary y-coordinate, but
the subdivision must be updated as if the points had been inserted in increasing order
of y-coordinate (see Fig. 7(b)).

(c) Prove that if the points are added in random order, then the expected number of struc-
tural changes to the subdivision with each insertion is O(1).

5

Problem 10. Given two points p1 = (x1, y1) and p2 = (x2, y2) in the plane, we say that p2
dominates p1 if x1 ≤ x2 and y1 ≤ y2. Given a set of points P = {p1, p2, . . . , pn}, a point pi
is said to be Pareto maximal if it is not dominated by any other point of P (shown as black
points in Fig. 8(b)).

(a) (b)

Figure 8: Paresto maxima.

Suppose further that the points of P have been generated by a random process, where the x-
coordinate and y-coordinate of each point are independently generated random real numbers
in the interval [0, 1].

(a) Assume that the points of P are sorted in increasing order of their x-coordinates. As
a function of n and i, what is the probability that pi is maximal? (Hint: Consider the
points pj , where j ≥ i.)

(b) Prove that the expected number of maximal points in P is O(log n).

Problem 11. Consider an n-sided simple polygon P in the plane. Let us suppose that the leftmost
edge of P is vertical (see Fig. 9(a)). Let e denote this edge. Explain how to construct a data
structure to answer the following queries in O(log n) time with O(n) space. Given a ray r

whose origin lies on e and which is directed into the interior of P , find the first edge of P
that this ray hits. For example, in the figure below the query for ray r should report edge f .
(Hint: Reduce this to a point location query in an appropriate planar subdivision.)

f

re

P

Figure 9: Ray-shooting queries.

Problem 12. You are given a set P of n points in R
2. Present data structures for answering

the following two queries. In each case, the data structure should use O(n2) space, it should
answer queries in O(log n) time. (You do not need to explain how to build the data structure.)

6

(a) The input to the query is a nonvertical line ℓ. Such a line partitions P into two (possibly
empty) subsets: P+(ℓ) consists of the points lie on or above ℓ and P−(ℓ) consists of
the points of P that lie strictly below ℓ (see Fig. 10(a)). The answer is the maximum
vertical distance h between two lines parallel to h that lie between P+(ℓ) and P−(ℓ) (see
Fig. 10(b)).

For simplicity, you may assume that neither set is empty (implying that h is finite).

(a) (b)

ℓ

P
+(ℓ)

P
−(ℓ)

ℓ

h

ℓ

(c)

ℓ
+

ℓ
−

Figure 10: Separation queries.

(b) Again, the input to the query is a nonvertical line ℓ. The answer to the query consists
of the two lines ℓ− and ℓ+ of minimum and maximum slope, respectively, that separate
P+(ℓ) from P−(ℓ) (see Fig. 10(c)). You may assume that P+(ℓ) from P−(ℓ) are not

separable by a vertical line (implying that these two slopes are finite).

Problem 13. You are given a set P of n points in the plane and a path π that visits each point
exactly once. (This path may self-intersect. See Fig. 11.)

π

ℓ1 ℓ2

Figure 11: Path crossing queries.

Explain how to build a data structure from P and π of space O(n) so that given any query line
ℓ, it is possible to determine in O(log n) time whether ℓ intersects the path. (For example, in
Fig. 11 the answer for ℓ1 is “yes,” and the answer for ℓ2 is “no.”) (Hint: Duality is involved,
but the solution requires a bit of “lateral thinking.”)

Problem 14. Consider the following two geometric graphs defined on a set P of points in the
plane.

(a) Box Graph: Given two points p, q ∈ P , define box(p, q) to be the square centered at
the midpoint of pq having two sides parallel to the segment pq (see Fig. 12(a)). The
edge (p, q) is in the box graph if and only if box(p, q) contains no other point of P (see
Fig. 12(b)). Show that the box graph is a subgraph of the Delaunay triangulation of P .

7

(b) Diamond Graph: Given two points p, q ∈ P , define diamond(p, q) to be the square
having pq as a diagonal (see Fig. 12(c)). The edge (p, q) is in the diamond graph if
and only if diamond(p, q) contains no other point of P (see Fig. 12(d)). Show that the
diamond graph may not be a subgraph of the Delaunay triangulation of P . (Hint: Give
an example that shows that the diamond graph is not even planar.)

(a) (b)

q

p

box(p, q)

(c) (d)

q

p

diamond(p, q)

Figure 12: The box and diamond graphs.

Problem 15. You are given a set of n sites P in the plane. Each site of P is the center of a circular
disk of radius 1. The points within each disk are said to be safe. We say that P is safely

connected if, given any p, q ∈ P , it is possible to travel from p to q by a path that travels
only in the safe region. (For example, the disks of Fig. 13(a) are connected, but the disks of
Fig. 13(b) are not.)

Present an O(n log n) time algorithm to determine whether such a set of sites P is safely
connected. Justify the correctness of your algorithm and derive its running time.

(a) (b)

qp qp

Figure 13: Safe connectivity.

Problem 16. In class we argued that the number of parabolic arcs along the beach line in Fortune’s
algorithm is at most 2n − 1. The goal of this problem is to prove this result in a somewhat
more general setting.

Consider the beach line at some stage of the computation, and let {p1, . . . , pn} denote the
sites that have been processed up to this point in time. Label each arc of the beach line with
its the associated site. Reading the labels from left to right defines a string. (In Fig. 14 below
the string would be “p2p1p2p5p7p9p10”.)

(a) Prove that for any i, j, the following alternating subsequence cannot appear anywhere
within such a string:

. . . pi . . . pj . . . pi . . . pj . . .

8

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10
p2

p1

p2

p5
p7

p9
p10

Figure 14: Beach-line complexity.

(b) Prove that any string of n distinct symbols that does not contain any repeated symbols
(. . . pipi . . .) and does not contain the alternating sequence1 of the type given in part (a)
cannot be of length greater than 2n− 1. (Hint: Use induction on n.)

Problem 17. Consider an n-element point set P = {p1, . . . , pn} in R
2, and an arbitrary point

q ∈ R
2 (which is not in P). We say that q is k-deep within P if any line ℓ passing through q

has at least k points of P on or above the line and at least k points of P on or below it.

q

ℓ

Figure 15: Point q is 4-deep within P .

For example, the point q in Fig. 15 is 4-deep, because any line passing through q has at least
four points of P on either side of it (including lying on the line itself).

(a) Assuming we use the usual dual transformation, which maps point p = (a, b) to line
p∗ : y = ax− b, explain what it means for a point q to be k-deep within P (in terms of
the dual line q∗ and the dual arrangement A(P ∗)).

(b) Present an efficient algorithm which, given P and q, determines the maximum value k

such that q is k-deep within P . (Hint: O(n log n) time is possible. I will accept a slower
algorithm for partial credit.)

(c) Present an efficient algorithm which, given P and an integer k, determines whether there
exists a point q that is k-deep within P . (Hint: First consider what this means in the
dual setting. O(n2 log n) time is possible. I will accept a slower algorithm for partial
credit.)

For parts (b) and (c) briefly justify your algorithm’s correctness and derive its running time.

1Sequences that contain no forbidden subsequence of alternating symbols are famous in combinatorics. They are

known as Davenport-Schinzel sequences. They have numerous applications in computational geometry, this being

one.

9

CMSC 754: Fall 2021 Dave Mount

CMSC 754: Midterm Exam

This exam is closed-book and closed-notes. You may use one sheet of notes (front and back).
Write all answers on the exam paper. If you have a question, either raise your hand or come to the
front of class. Total point value is 100 points. Good luck!

In all problems, unless otherwise stated, you may assume that inputs are in general position.
You may make use of any results presented in class and any well known facts from algorithms
or data structures. If you are asked for an O(T (n)) time algorithm, you may give a randomized

algorithm with expected time O(T (n)).

Problem 1. (20 points; 4–6 points each) Short-answer questions.

(a) In our plane-sweep algorithm for computing line segment intersections, we were careful
to store only those intersection points involving pairs of segments that are adjacent on

the current sweep line. Why did we do this?

(b) You are given four points a, b, c, d in R
2. Using just orientation tests, show how to test

whether the line segment ab intersects the line segment cd. (Briefly explain.)

(c) True or False: If a simple polygon is both x-monotone and y-monotone, then it is
monotone with respect to any direction. (Briefly explain your answer.)

(d) Consider the line arrangement shown in the figure below. Suppose that we insert the
line ℓi into this arrangement. Indicate (by redrawing the figure) which edges of the
arrangement are traversed by the insertion algorithm presented in class.

ℓi

Figure 1: Inserting a line into an arrangement.

Problem 2. (15 points) The objective of this problem is to explore independent sets in triangula-
tions. Throughout this problem, let P = {p1, . . . , pn} denote a set of n sites in the plane, and
let T (P) denote an arbitrary (not necessarily Delaunay) triangulation of P (see Fig. 2(a)).
Define the degree of any site p ∈ P , denoted deg(p), to be the number of edges of T (P)
incident on it.

(a) (5 points) Prove that there exists a constant c, such that
∑

p∈P deg(p) ≤ cn, for all
sufficiently large n.

(Recall that if there are h points on the convex hull, there are 2n− h− 2 triangles and
3n − h − 3 edges. Ideally, your answer should apply for any value of h, but for partial
credit, you may assume that h has a specific value of your choosing.)

1

(a) (b)

p

deg(p) = 4 independent

set P ′′

Figure 2: Independent sets in a triangulation.

(b) (5 points) Let c be the constant derived in your solution to (a). We say that a site p ∈ P
has high degree if deg(p) ≥ 3c, and otherwise it has low degree. Let P ′ ⊆ P be the subset
of low degree sites of P . Prove that there exists a constant c′ (which may depend on c)
such that, for all sufficiently large n, |P ′| ≥ n/c′.

(c) (5 points) Define an independent set to be a subset P ′′ ⊆ P such that no two sites in P ′′

are adjacent in T (P) (see Fig. 2(b)). Given the previous constants c and c′, prove that
there exists a constant c′′ > 1 (depending on c and c′) such that, for all sufficiently large
n, P contains an independent set of size at least n/c′′ consisting entirely of low-degree

sites.

Problem 3. (30 points) In parts (a) and (c) below, you are asked to give a reduction to linear
programming (LP). In each case, explain how the problem is formulated as an instance of LP
(and what the dimension of the space is), and how the result of the LP (feasible, infeasible,
unbounded) is to be interpreted in answering the problem.

ℓ : y = ax + b
ci

d−i

d+i

(b) (c)

h
hh

hℓ

(a)

pi

1
slab about ℓ
of height h

Figure 3: Stabbing segments.

(a) (10 points) Given a line ℓ, define the slab of height h centered about ℓ to be the region
bounded between the two lines parallel to ℓ, one h units above and on h units below (see
Fig. 3(a)).

You are given a set of n vertical line segments in the plane S = {s1, . . . , sn}, where each
segment si is described by three values, its x-coordinate ci, its upper y-coordinate d+i
and its lower y-coordinate d−i (see Fig. 3(b)).

2

Apply LP to determine whether there exists a line ℓ : y = ax + b that intersects all of
these segments. Further, if such a line exists, return the line ℓ with the property that it
is the center of the slab of maximum height h that cuts through all the segment. (You
can solve just the existence problem for partial credit.)

(b) (10 points) Suppose that your LP from part (a) reveals that there is no line that stabs
all the segments. Instead, you decide to solve the following optimization problem. Given
a set of vertical line segments S (as in part (a)), find a line ℓ : y = ax− b that intersects
the maximum number of segments of S.

You decide to solve this problem in the dual setting. Using the dual transformation
given in class, explain what the equivalent optimization problem is in the dual setting.
(That is, explain how to dualize the line segments of S, how to dualize the line ℓ, and
what property the dual point ℓ∗ must satisfy so that we are effectively solving the same
optimization problem.) You do not need to explain how to solve this dual problem.

(c) (10 points) You are given a collection of n axis-aligned unit squares in the plane. The
squares are centered at the points P = {p1, . . . , pn}, where pi = (ci, di) (see Fig. 3(c)).

Apply LP to determine whether there exists a line ℓ : y = ax + b that intersects all of
these squares. If it exists, return any such line.

Problem 4. (20 points) In this problem, we will consider two query problems involving a set of
n circular disks in the plane (which may overlap), each of unit radius. Let P = {p1, . . . , pn}
denote their centers, and let us assume that at least one of these disks contains the origin O.

For each of the parts below, explain how to preprocess these disks into a data structure
to answer the specified query. In each case, your data structure should use O(n) space,
be constructed in O(n log n) time, and answer queries in O(log n) time. Briefly justify the
correctness and running times of your solutions.

(a) (15 points) Given a query point q, determine whether it is possible to move q to the
origin, so that the path lies entirely within the union of these disks. For example, in
Fig. 4(a), q1 can reach the origin O but q2 cannot. Note that if q does not lie within any
disk, the answer is trivially “no”.

q1

q2

(a)

s1

s2

(b)

t1

t2

O

Figure 4: Motion planning among disks.

(b) (5 points) Given two query points s and t, determine whether it is possible to move from
s to t, so that the path lies entirely within the union of these disks. For example, in
Fig. 4(b), s1 can reach t1, but s2 cannot reach t2. (Hint: You can explain the changes
you would make to the solution from (a).)

3

Problem 5. (15 points) This problem is inspired from applications in surveillance. Given a simple
polygon P , we say that two points p and q are visible to each other if the open line segment
between them lies entirely within P ’s interior. We allow for p and q to lie on P ’s boundary,
but the segment between them cannot pass through any vertex of P (see Fig. 5(a)).

visible

visible

not visible

not
visible

(a)

P P

(b)

Figure 5: (a) Visibility and (b) a guarding set of size 9 for P .

A guarding set for P is any set of points G, called guards, lying in P (either on its boundary
or in its interior) such that every point in P ’s interior is visible to at least one guard of G.
Note that guards may be placed on vertices, along edges, or in P ’s interior (see Fig. 5(b)).

Prove that there exists a constant c ≥ 1 such that (for all sufficiently large n) every n vertex
simple polygon P has a guarding set of size at most n/c. For full credit, show that c = 3
works. For partial credit, show that some smaller value of c (e.g., c = 2) works. You do not

need to show how to compute this set. (Hint: Decompose the polygon into simpler pieces.)

4

CMSC 754: Fall 2021 Dave Mount

Homework 3: Arrangements, Search, and Approximations

Handed out Tue, Nov 16. Due at the start of class on Tue, Nov 30. Late homeworks are not
accepted (unless an extension has been prearranged) so please turn in whatever you have completed
by the due date.

Unless otherwise specified, you may assume that all inputs are in general position. Whenever
asked to give an algorithm running in O(f(n)) time, you may give a randomized algorithm whose
expected running time is O(f(n)). If your algorithm involves a plane sweep of a line arrangement
and runs in time O(n2 log n), you may assume that there exists a topological plane sweep variant
that runs in time O(n2).

Problem 1. Present O(n2) time algorithms for the following two problems. (The two solutions
are closely related, so you can give one solution in detail and explain the modifications needed
for the second one.)

(a) Given a set S = {s1, . . . , sn} of non-intersecting line segments in the plane, does there
exist a (nonvertical) line ℓ that intersects none of the segments of S such that there is
at least one segment of S lying above ℓ and at least one lying below? (See Fig. 1(a).)

(a) (b)

ℓ ℓ

Figure 1: Stabbing segments.

(b) Given a set S = {s1, . . . , sn} of non-intersecting line segments in the plane, does there
exist a line ℓ that intersects all of the segments of S? (See Fig. 1(b).)

(c) Part (b) looks very similar to a problem we have seen before of stabbing vertical segments.
Provide an intuitive explanation as to what goes wrong if you were to try to adapt the
LP-based solution to that problem to solve this problem.

Problem 2. It was pointed out on Piazza that this problem as originally stated does not make
sense since there always exist balanced slabs of unbounded height. Here is a version that (I
hope) fixes these issues. If you believe that there are nonsensical or trivial solutions, please
post a note to Piazza.

You are given two sets of points R and B (red and blue) in R
2. Let n = |R| + |B| denote

the total number of points. A slab S(a, b−, b+) is the region between two pair of parallel
lines, S(a, b−, b+) = {p : apx + b− ≤ py ≤ apx + b+} (see Fig. 2(a)). Points lying on the
slab’s boundary may either be counted or excluded as lying within the slab. (This is needed,

1

since otherwise it is possible to have solutions that are arbitrarily close to optimal, but not
optimal.) The height of the slab is the vertical distance between the lines, b+ − b−.

A slab is balanced if it contains an equal number of red and blue points. In this problem, we
will consider computing the balanced slab of maximum height, which we’ll call maxBS(R,B).
Note that the maximum height slab may be of infinite height. To avoid some trivial special
cases involving vertical (or nearly vertical) slabs, we add the additional constraint that the
slab must contain at least one point from each set, and the slope a of the slab’s bounding
lines must satisfy −1 ≤ a ≤ +1.

(a) (b)

∈ R

∈ B

y = ax + b+

y = ax + b−

height
p′

p′′

q

Figure 2: Balanced slab. (Note that the slab shown is not the maxBS(R,B).)

(a) Assuming the standard dual transformation given in class (a, b) ↔ y = ax− b, describe
the dual-equivalent formulation of this problem. That is, what is the slab? what is its
height? what condition is satisfied for the slab to have maximum height? (Please read
parts (b) and (c) before writing down your answer.)

(b) Assuming that the point set R ∪ B is in general position, prove that if maxBS(R,B) is
of finite height and its slope is strictly between −1 and +1 then it has three points on
its boundary, two on one line and one on the other (see Fig. 2(b)).

(c) Present an efficient algorithm, which given R and B, computes the maxBS(R,B). Derive
your algorithm’s running time and justify its correctness.

Hint: This can be done in time O(n2 log n), but it even processing is not obvious. You
will get half credit if your algorithm run in O(n3) time.)

Problem 3. As mentioned in class, a WSPD is an efficient (approximate) representation for the
complete graph on a set of points P . Another important structure is the complete bipartite
graph on a pair of point sets. In this problem, we will explore this topic.

You are given two sets of points in R
d, called R (for red) and B (for blue). Throughout,

let n = |R| + |B|. A bichromatic pair is any pair of points (p, q), where p ∈ R and q ∈ B.
Given a parameter s > 0, define a bichromatic s-WSPD is a collection of pairs of subsets
{(R1, B1), (R2, B2), . . .} such that

(i) Ri ⊆ R and Bi ⊆ B,

(ii) Ri and Bi are s-well separated, and

2

(iii) for every bichromatic pair (p, q) there is exactly one pair (Ri, Bi) such that p ∈ Ri and
q ∈ Bi.

Given this definition, answer the following questions:

(a) Explain how to modify the standard WSPD algorithm given in class to produce a bichro-
matic s-WSPD for the sets R and B. (I do not need a complete algorithm description.
You can explain what changes to make to the algorithm given in class.)

(b) Show that the asymptotic running time and total size of your bichromatic WSPD con-
struction are the same as for the standard WSPD construction.

(c) Given R and B, define the average bichromatic distance to be

∆(R,B) =
1

|R| · |B|

∑

p∈R

∑

q∈B

‖pq‖.

Present an algorithm that, given R, B, and 0 < ε < 1, computes an ε-approximation to
the average bichromatic distance. That is, your algorithm should return value ∆∗ such
that

∆(R,B)

1 + ǫ
≤ ∆∗ ≤ (1 + ε) ·∆(R,B).

Your algorithm should run in time O(n log n+ n/εd) time.

Problem 4. In this problem, we will consider how to use/modify range trees to answer a number
of queries. In each case, the input is an n-element point set P in R

2. In each case, explain
what points are stored in the range tree, what the various levels of the range tree are, and
how queries are answered. Finally, justify your algorithm’s correctness and derive its storage
and running time as a function of n.

(a) A skewed rectangle is defined by two points q− = (x−, y−) and q+ = (x+, y+). The range
shape is a parallelogram that has two vertical sides and two sides with a slope of +1.
The lower left corner is q− and the upper right corner is q+. The answer to the query is
the number of points of P that lie within the parallelogram. (In Fig. 3(a), the answer
to the given query is 3.)

(b) In a vertical segment-sliding query (VSS), you are given a vertical line segment with
x-coordinate x0 and endpoints at y-coordinates y0 and y1, where y0 < y1. The answer
to the query is the point that is first hit if the segment is translated to the right. More
formally, among the points of P whose y-coordinates lie within the interval [y0, y1], the
answer is the point with the smallest x coordinate greater than or equal to x0. If there
are no points that satisfy these conditions, the query returns the special value null.
(For example, in Fig. 3(b), the query returns point a.)

(c) A sector query is defined by two nonnegative lengths r− < r+ and two nonnegative
angles θ− < θ+ ≤ 2π. This defines a shape bounded between two rays emanating from
the origin at angles θ− and θ+ and two circular arcs between these rays at distances r−
and r+ from the origin (see Fig. 3(c)). The answer to the query is the number of points
of P lying within this region.

3

a

b
c

d

e

f

g

i
h

j

k

l

m

n

p
u

s

t

o

y0

x

y

a

b
c

d

e

f

g

i
h

j
k

l

m

n

p

s

t

o

x

y

q+

q−

Ans: 3

(a) (b)

ab
c

d

e

f

gi

h

j

k

l

m

n

p

s

t

o

x

y

(c)

u u
Ans: 4

x0

y1

r
−

r+

θ
−

θ+

Figure 3: Using range trees to answer various queries.

Hint: In all cases, it is possible to answer queries in O(log2 n) time without the need to resort
to cascading.

Challenge problems count for extra credit points. These additional points are factored in only after
the final cutoffs have been set, and can only increase your final grade.

Challenge Problem. You are given a ball B in R
2 and a collection of n lines L = {ℓ1, . . . , ℓn} in

the plane. For each of the following tasks, provide an O(n log n) time solution. (If you answer
(c), you immediately have an answer to both (a) and (b).)

(a) Determine whether none of the lines L intersect within B (see Fig. 4(a)).

(b) Determine whether all of the lines of L intersect each other within B (see Fig. 4(b)).

(c) Count the number of pairs of lines of L that intersect within B (see Fig. 4(c)).

Hint: You may assume that all the lines intersect the ball. Start by labeling the points where
the lines intersect the boundary of the ball with the line’s index.

(a) (b) (c)

8 intersections8 intersections

Figure 4: Challenge Problem.

4

CMSC 754: Fall 2021 Dave Mount

Homework 4: Sampling, Motion Planning, and More

Handed out Tue, Nov 30. Due, Tue, Dec 14, 9:30am. (There is no class that day, but I’ll record
pretend lecture where I will discuss the solutions.) Late homeworks are not accepted (unless an
extension has been prearranged) so please turn in whatever you have completed by the due date.
Unless otherwise specified, you may assume that all inputs are in general position. Whenever asked
to give an algorithm running in O(f(n)) time, you may give a randomized algorithm whose expected
running time is O(f(n)).

Problem 1. The objective of this problem is to investigate the VC-dimension of some range spaces.
Recall that a range space Σ is a pair (X,R), where X is a (finite or infinite) set, called points,
and R is a (finite or infinite) family of subsets of X, called ranges.

For each of the following range spaces, derive its VC-dimension and prove your result. (Note
that in order to show that the VC-dimension is k, you need to give an example of a k-element
subset that is shattered and prove that no set of size k + 1 can be shattered.) Throughout,
you may assume that points are in general position.

(a) Σ = (R2,W), where W consists of all horizontal wedges. A horizontal wedge is the region
bounded between two rays, one horizontal and the other of arbitrary (finite) slope (see
Fig. 1(a)). (It is my intention that the wedge angle is acute, but if you want to consider
obtuse wedges instead, that is fine with me.)

(b) Σ = (R2,W ′), where W ′ consists of all horizontal double wedges. A horizontal double

wedge is the region bounded between two lines, one horizontal and the other of arbitrary
(finite) slope. It consists of the points that lie above one line and below the other (see
Fig. 1(b)).

Hint: Getting a tight upper bound on the VC-dimension seems to be very difficult. For
this part, it suffices to come up with any constant upper bound, by whatever method you
like. (See, e.g., the material on canonical shapes from the Lecture 20 Notes.) Deriving
a better bound is left as the Challenge Problem.

(a) (b) (c)

Figure 1: VC-Dimension of some range spaces.

Also, answer the following.

1

http://www.cs.umd.edu/class/fall2021/cmsc754/Notes/lect20-notes.pdf

(c) Prove that the range space Σ = (R2, C) consisting of convex polygons in the plane has
unbounded VC-dimension (see Fig. 1(c)). That is, show that for any n > 0, there exists
an n-element point set that is shattered by the range space of convex polygons.

Here is a sample solution for parts (a) and (b), to give you some idea of what I am looking
for. (It would be even nicer if you include some figures.)

Example: Consider the range space Σ = (R2, H) where H consists of all closed horizontal
halfspaces, that is, halfplanes of the form y ≥ y0 or y ≤ y0. We claim that VC(Σ) = 2.

VC(Σ) ≥ 2 : Consider the points a = (0,−1) and b = (0, 1). The ranges y ≥ 2, y ≥ 0, y ≤ 0
and y ≤ 2 generate the subsets {∅, {a}, {b}, {a, b}}, respectively. Therefore, there is a
set of size two that is shattered.

VC(Σ) < 3 : Consider any three element set {a, b, c} in the plane. Let us assume that these
points have been given in increasing order of their y-coordinates. Observe that any
horizontal halfplane that contains b, must either contain a or c. Therefore, no 3-element
point set can be shattered.

Problem 2. In this problem we will explore an idea for constructing a weak ε-net for a set of P
points in the plane. By a “weak” ε-net, we mean a set of points that satisfies the standard
definition of an ε-net, but it can be formed from any set of points, not just the points of P .
We’ll give the broad outline, and you will fill in the details.

You are given n points P in R
2. Let us make the general-position assumption that there are

no duplicate x- or y-coordinates. We construct a set S ⊂ R
2 as follows. We first compute

an integer k ≥ 1, and let m = ⌊n/k⌋. Next, we sort the points of S in increasing order
according to their x-coordinates, and let 〈x1, . . . , xn〉 denote the resulting sorted sequence of
coordinates. We take every kth element from this sorted sequence:

X = {xk, x2k, x3k, . . . , xmk}.

We repeat the same process for the y-coordinates, by first sorting them in increasing order as
〈y1, . . . , yn〉, and setting

Y = {yk, y2k, y3k, . . . , ymk}.

(Note that we use the same value of k and m in defining both X and Y .) Finally, we set
S = X × Y , that is, for 1 ≤ i, j ≤ m, we include the point (xi, yj) into S. Clearly, S has m2

elements. Observe that while they are based on the coordinates of the points of P , the points
of S need not belong to P .

(a) For each of the following range spaces, answer the following question. If a range from
the set contains no elements of S, what is the maximum number of elements of P that
it might contain? (That is, if Q ∩ S = ∅ then how large can |Q ∩ P | be?) In each case
justify your answer. (Express your answer precisely, not as an asymptotic function.)

(R) Axis-aligned rectangles (of any width and height).

(T) Axis-aligned right triangles. This is defined to be any right triangle such that the
legs (i.e., the sides incident to the 90◦ angle) are parallel to the x- and y-axes. The
hypotenuse can have any slope.

2

(a) (b)

x5 x10 x15 x20 x25 x30

y5

y10

y15

y20

y25

y30

x5 x10 x15 x20 x25 x30

y5

y10

y15

y20

y25

y30

R
T

B

Figure 2: Weak ε-net construction (for k = 5).

(B) Euclidean balls (of any radius).

(b) Suppose you are given a parameter ε > 0. Based on your answers to (R), (T), and (B)
above, what value should we set k to (as a function of n and ε) in the above construction
so that the resulting set S is an ε-net (in the weak sense) for P . We want k to be as
large as possible, so that the resulting ε-net is as small as possible.

(c) Suppose that further, we would like a weak ε-sample. For each of the range spaces, (R),
(T), and (B) above, is there any value of k such that the resulting set S is an ε-sample
of P , where the size of S is a function of ε (but not n)? If so, give this value and justify
its correctness. If not, explain why the resulting set S’s size must depend on n.

Problem 3. This problem has many parts, but each answer is very short, and sentence, formula,
or short derivation suffices for most.

Iterative reweighting (seen in Lecture 19) can be used to solve a number of geometric opti-
mization involving set systems of constant VC-dimension. In this problem, we will derive an
algorithm for computing the circular disk enclosing a set of n points in R

2. (We will derive
an O(n log n) time solution, but there is actually an O(n) time more efficient solution based
on a randomized incremental approach.)

Given a set of points P ⊂ R
2, define the minimum enclosing ball, MEB(P), to be the circular

disk B of smallest radius that contains P . Generally, MEB(P) is determined by a constant
number of points P ∗ on the boundary of the ball, called the basis (see Fig. 3(a)). (There at
most three in R

2 and generally at most d+ 1 points in R
d). The following two facts are easy

to prove:

❼ For any set S such that P ∗ ⊆ S ⊆ P , MEB(S) = MEB(P ∗) (see Fig. 3(b)).

❼ For any set S such that S ⊆ P , radius(MEB(S)) ≤ radius(MEB(P)) (see Fig. 3(c)).
(We cannot infer that MEB(S) ⊆ MEB(P), since one disk might “bulge out” from the
other.)

Suppose that we have access to a black-box algorithm for computing the MEB, but it is very
slow and can only be applied to sets of constant size. Our algorithm operates by computing

3

(a) (b)

∈ P

∈ P
∗

MEB(P)

∈ P

∈ P
∗

∈ S

MEB(P)

MEB(S)

(c)

∈ P

∈ P
∗

∈ Si

MEB(P)

Bi

Figure 3: Reweighting algorithm for MEB.

an ε-net S of constant size for P with respect to the set system where the ranges are the
points of P that lie outside of a circular disk. (We will see that this set system has constant
VC-dimension.) We then invoke our slow MEB algorithm to compute the MEB for S. If the
resulting ball contains P , we are done. If not, we double the weights of all the points of P
outside this ball, and repeat. Here is the algorithm:

(1) Set ε← “fill this in later”. For each p ∈ P , set w0(p) = 1.

(2) Repeat for i← 1, 2, . . .

(a) Let Si be a weighted ε-net for P of size O((1/ε) log(1/ε)) with respect to the weights
wi−1 for ranges consisting of points lying outside a circular disk.

(b) Let Bi ← MEB(Si)

(c) If P ⊆ Bi, then return Bi as the MEB (success)

(d) Otherwise, for each p ∈ P \Bi, set wi(p)← 2wi−1(p).

We will prove that this algorithm is correct (subject to a suitable choice of ε).

(a) Consider any set system (X,R). The complimentary set system is (X,R), where R is
defined as follows. For each R ∈ R, R contains the compliment set R = X \R.

Prove that if (X,R) has VC-dimension d, then its compliment (X,R) also has VC-
dimension d. (Given the fact that the set system of Euclidean ball ranges has constant
VC-dimension, this implies that the set system of points outside a Euclidean ball also
has the same VC-dimension.)

(b) To establish (partial) correctness, prove that if in step 2(c), if the ball Bi = MEB(Si)
contains all the points of P , then Bi = MEB(P).

(c) Prove that after i (unsuccessful) iterations, Wi(P) ≤ n(1 + ε)i. (Using the fact that
1 + x ≤ ex, it further follows that Wi(P) ≤ neεi.)

(d) Suppose that the ith iteration is not successful. Prove that there exists at least one
point of the basis P ∗ that does not lie in Bi.

(e) Using (d), prove that after i (unsuccessful) iterations, Wi(P
∗) ≥ 2i/3. (Hint: You may

use the fact given in Lecture 19 that the growth rate is slowest if the points of P ∗ are
doubled equally often.)

(f) Based on (c) and (e), prove that i ≤ lg n/((1/3)− ε lg e).

4

(g) Based on (f), specify a (constant) value of ε such that the algorithm is guaranteed to
terminate within O(log n) iterations.

(h) Assuming that an ε-net can be computed in O(n) time, show that this algorithm runs
in time O(n log n).

Hint: The analysis is structurally similar to the one of Lecture 19 on the iterative reweighting
hitting set algorithm. I would suggest consulting the latex lecture notes, which has a bit more
details than the hand-written notes.

Problem 4. In this problem, we will be planning the motion of a line-segment robot R in the
plane amidst a collection of obstacles consisting of n disjoint obstacles P = {P1, . . . , Pn}.
Each obstacle is an axis-parallel rectangle. In particular Pi = [x−i , x

+

i]× [y−i , y
+

i]. The robot
is 2-units long, and its reference position oriented vertically with its midpoint at the origin
(see Fig. 4(a)). The robot is restricted to two types of motion:

Translation: It can translate through a vector t = (tx, ty), moving its reference point from
its current position p to p+ t.

Rotation: The robot can rotate about its reference point by either +90◦ (that is, counter-
clockwise) or −90◦ (that is, clockwise). When a rotation is performed, the entire circular
arc swept out by the any point on the segment must be free of any obstacles. (Think
of the segment as spinning in the plane—not picking it up, rotating it, and putting it
down.)

Therefore, the robot’s configuration consists of a point (x, y) where its center point is located
and its orientation o ∈ {V,H}, where “V ” indicates that the robot is parallel with the y-axis
and “H” indicates that it is parallel with the x-axis.

(a) (b)

R R

R

Figure 4: Motion planning for a rotating/translating segment.

A motion plan consists of a sequence of translations and rotations. Note that the robot either
translates or rotates. It cannot translate while rotating.

(a) For each of the possible orientations of the robot (“H” or “V ”), describe the shape of
the corresponding collision obstacle CR(Pi) (in terms of the parameters x−i , x

+

i , y
−

i , y
+

i).

(b) For each of the possible orientations of the robot (“H” or “V ”), describe the shape of
the corresponding collision obstacle CR(Pi) in the cases of +90◦ (counterclockwise) and

5

−90◦ (clockwise) rotation (in terms of the parameters x−i , x
+

i , y
−

i , y
+

i). There are four
shapes in all and their boundaries will involve circular arcs.

(c) Given your answers to (a) and (b), present an algorithm to determine whether there
exists a motion plan from an arbitrary starting placement configuration s = (xs, ys, os)
to a given target t = (xt, yt, ot). You may assume that both s and t are collision-free.

Hint: I’m really looking for a high level description of how to combine reachability
among the various collision obstacles. Efficiency is not a huge consideration, but your
solution should run in polynomial time in n.

Challenge Problem. Provide a better upper bound on the VC-dimension for horizontal double
wedges. (This is intentionally open-ended, and you don’t need to have the upper bound exact
to get full credit for this problem.)

6

CMSC 754: Fall 2021 Dave Mount

Sample Problems for the Final Exam

The final exam will be Thu, Dec 16, 8:00am-10:00am in class. The exam will be closed-book
and closed-notes. You may use two sheets of notes (front and back). The following problems have
been collected from old homeworks and exams. They do not necessarily reflect the actual difficulty
or coverage of questions on the final exam. The final will be comprehensive, but will emphasize
material since the midterm.

In all problems, unless otherwise stated, you may assume general position, and you may use of
any results presented in class or any well-known result from algorithms and data structures.

Problem 1. Give a short answer (a few sentences) to each question. Unless explicitly requested,
explanations are not required, but may be given for partial credit.

(a) A dodecahedron is a convex polyhedron that has 12 faces, each of which is a 5-sided pen-
tagon. Every vertex has degree 3. How many vertices and edges does the dodecahedron
have? Show how you derived your answer.

(b) Given a set P of n points in the plane, what is the maximum number of edges in P ’s
Voronoi diagram? (For full credit, express your answer up to an additive constant.)

(c) When the ith site is added to the Delaunay triangulation using the randomized incre-
mental algorithm, what is the worst-case number of edges that can be incident on the
newly added site? What can you say about the expected-case number of such edges
(assuming that points are inserted in random order)?

(d) For each of the following assertions about the Delaunay triangulation of a set P of n
points in the plane, which are True and which are False?

(i) The Delaunay triangulation is a t-spanner, for some constant t

(ii) The Euclidean minimum spanning tree of P is a subgraph of the Delaunay triangu-
lation

(iii) Among all triangulations of P , the Delaunay triangulation maximizes the minimum
angle

(iv) Among all triangulations of P , the Delaunay triangulation minimizes the maximum
angle

(v) Among all triangulations of P , the Delaunay triangulation minimizes the total sum
of edge lengths

(e) An arrangement of n lines in the plane has exactly n2 edges. How many edges are there
in an arrangement of n planes in 3-dimensional space? (Give an exact answer for full
credit or an asymptotically tight answer for half credit.) Explain briefly.

(f) Let P and Q be two simple polygons in R
2, where P has m vertices and Q has n vertices.

What is the maximum number of vertices on the boundary of the Minkowski sum P ⊕Q
(asymptotically) assuming:

(i) P and Q are both convex

(ii) P is convex but Q is arbitrary

1

(iii) P and Q are both arbitrary

(g) In each of the following cases, what is the asymptotic worst-case complexity (number of
vertices) on the boundary of the union of n of the following objects in R

2:

(i) axis-parallel squares

(ii) axis-parallel rectangles (of arbitrary heights and widths)

(iii) rectangles (of arbitrary heights and widths which need not be axis parallel)

(iv) axis-parallel rectangles, where the width to height ratio is either 4× 1 or 1× 4.

Problem 2. You are given a set P of n points in R
2. A nonvertical line ℓ partitions P into two

(possibly empty) subsets: P+(ℓ) consists of the points lie on or above ℓ and P−(ℓ) consists
of the points of P that lie strictly below ℓ (see Fig. 1(a)).

(a) (b)

ℓ

P
+(ℓ)

P
−(ℓ)

ℓ

h

ℓ

(c)

ℓ
+

ℓ
−

Figure 1: Query problem.

Given the point set P , present data structures for answering the following two queries. In each
case, the data structure should use O(n2) space, it should answer queries in O(log n) time.
(You do not need to explain how to build the data structure, but it should be constructable
in polynomial time in n.)

(a) The input to the query is a nonvertical line ℓ. The answer is the maximum vertical dis-
tance h between two lines parallel to h that lie between P+(ℓ) and P−(ℓ) (see Fig. 1(b)).
For simplicity, you may assume that neither set is empty (implying that h is finite).

(b) Again, the input to the query is a nonvertical line ℓ. The answer to the query are the
two lines ℓ− and ℓ+ of minimum and maximum slope, respectively, that separate P+(ℓ)
from P−(ℓ) (see Fig. 1(c)). You may assume that P+(ℓ) from P−(ℓ) are not separable
by a vertical line (implying that these two slopes are finite).

Problem 3. You are given a set P of n points in the plane and a path π that visits each point
exactly once. (This path may self-intersect. See Fig. 2.)

Explain how to build a data structure from P and π of space O(n) so that given any query
line ℓ, it is possible to determine in O(log n) time whether ℓ intersects the path. (For example,
in Fig. 2 the answer for ℓ1 is “yes,” and the answer for ℓ2 is “no.”) (Hint: Duality is involved,
but the solution requires a bit of lateral thinking.)

Problem 4. Consider the following two geometric graphs defined on a set P of points in the plane.

2

π

ℓ1 ℓ2

Figure 2: Path crossing queries.

(a) Box Graph: Given two points p, q ∈ P , define box(p, q) to be the square centered at
the midpoint of pq having two sides parallel to the segment pq (see Fig. 3(a)). The
edge (p, q) is in the box graph if and only if box(p, q) contains no other point of P (see
Fig. 3(b)). Show that the box graph is a subgraph of the Delaunay triangulation of P .

(b) Diamond Graph: Given two points p, q ∈ P , define diamond(p, q) to be the square having
pq as a diagonal (see Fig. 3(c)). The edge (p, q) is in the diamond graph if and only if
diamond(p, q) contains no other point of P (see Fig. 3(d)). Show that the diamond graph
may not be a subgraph of the Delaunay triangulation of P . (Hint: Give an example that
shows that the diamond graph is not even planar.)

(a) (b)

q

p

box(p, q)

(c) (d)

q

p

diamond(p, q)

Figure 3: The box and diamond graphs.

Problem 5. Consider the range space (P,R) where P is a set of n points in the plane, and R is
the set of all ranges arising by intersecting P with a closed halfplane.

(a) Show that the VC-dimension of halfplane ranges is at least three by giving an example
of a set of three points in the plane that are shattered by the set of halfplane ranges.

(b) Show that the VC-dimension of halfplane ranges is at most three, by proving that no
four-element set can be shattered by halfplane ranges.

(c) Prove from first principles that |R| = O(n2), where n = |P |. You are not allowed
to appeal to Sauer’s lemma. (Hint: Explain how to map each range to one of O(n2)
canonical halfplanes, containing the same set of points as the original halfplane.)

Problem 6. (Here is another problem on VC-dimension from another semester.)

In this problem we will consider the VC-dimension of two simple range spaces. Define a quad

to be a four-sided polygon that is bounded to the left and right by vertical sides, on the
bottom by a horizontal side, and the slope of the top side is arbitrary (see Fig. 4(a)). Define
a restricted quad to be a quad whose left side is at x = 0, whose right side is at x = 1, and
whose bottom side is at y = 0 (see Fig. 4(b)).

3

(a) (b)

Quads

0 1
0

Restricted Quad

Figure 4: Quads and restricted quads.

(a) Prove that the VC-dimension of restricted quads is at least 2 by showing that there exists
a 2-element point set in R

2 that is shattered by the set of restricted quads.

(b) Prove that the VC-dimension of restricted quads is at most 2 by showing that no point
3-element point set in R

2 is shattered by the set of restricted quads. (Hint: Label the
three points p1, p2, and p3 from left to right. There are two cases depending on whether
p2 lies above or below the segment p1p3.)

(c) Prove that the VC-dimension of (general) quads is at least 5 by showing that there exists
a 5-element point set in R

2 that is shattered by the set of quads.

(d) Prove that the VC-dimension of (general) quads is at most 5 by showing that no point
6-element point set in R

2 is shattered by the set of restricted quads. (Hint: A careful
proof with full details will take too long. It suffices to briefly explain how to generalize
your answer to part (b).)

Problem 7. Given a set of n points P in R
d, and given any point p ∈ P , its nearest neighbor

is the closest point to p among the remaining points of P . Note that nearest neighbors are
not reflexive, in the sense that if p is the nearest neighbor of q, then q is not necessarily the
nearest neighbor of p. Given an approximation factor ε > 0, we say that a point p′ ∈ P is
an ε-approximate nearest neighbor to p if ‖pp′‖ ≤ (1 + ε)‖pp′′‖, where p′′ is the true nearest
neighbor to p.

Show that in O(n log n + (1/ε)dn) time it is possible to compute an ε-approximate nearest
neighbor for every point of P . Justify the correctness of your algorithm. Hint: This can be
solved using either WSPDs or spanners.

Note: There exists an algorithm that runs in O(n log n) time that solves this problem exactly,
but it is considerably more complicated than the one I have in mind here.

Problem 8. A set P of n points in R
d determines a set of

(

n
2

)

different distances. Define ∆(P) to
be this set of distances {‖pi − pj‖ : 1 ≤ i < j ≤ n}. Given an integer k, where 1 ≤ k ≤

(

n
2

)

,
we are interested in computing the kth smallest distance from this set. Normally, this would
take O(n2) time, so let’s consider a fast approximation algorithm.

Let δ(P, k) denote the exact kth smallest distance in ∆(P). Given ε > 0, a distance value x

4

is an ε-approximation to δ(P, k) if

δ(P, k)

1 + ε
≤ x ≤ (1 + ε)δ(P, k).

Present an efficient algorithm to compute such a value x. Justify your algorithm’s correctness
and derive its running time. (Hint: Use well-separated pair decompositions. You may assume
that, when the quadtree is computed, each node u of the quadtree is associated with an integer
wt(u), which indicates the number of points of P lying within u’s subtree.)

You may assume that d and ε are constants (independent of n). I know of an algorithm that
runs in time O(n log n + n/εd) time, but I will accept for full credit an algorithm that runs
in time O((n log n)/εd).

Problem 9. You are given a set P of n points in R
d and an approximation factor ε > 0. An

(exact) distance query is defined as follows. You are given a real δ > 0, and you are to return
a count of all the pairs of points (p, q) ∈ P × P , such that ‖pq‖ ≥ δ. In an ε-approximate

distance query, your count must include all pairs (p, q) where ‖pq‖ ≥ δ(1+ ε) and it must not

include any pairs (p, q) where ‖pq‖ < δ/(1 + ε). Pairs of points whose distances lie between
these two bounds may or may not be counted, at the discretion of the algorithm.

Explain how to preprocess P into a data structure so that ε-approximate distance counting
queries can be answered in O(n/εd) time and O(n/εd) space. (Hint: Use a well-separated pair
decomposition. Explain clearly what separation factor is used and any needed modification
to the WSPD construction.)

Problem 10. This problem considers motion planning in a dynamic setting, which is inspired by
various old video games. You are given a robot that consists of a line segment of unit length
that resides on the x-axis. The robot can move left or right (but not up or down) at a speed
of up to one unit per second. You are given two real values x− and x+, and the robot must
remain entirely between these two values at all times (see Fig. 5). The robot’s reference point

is its left endpoint, and at time t = 0, the left endpoint is located at x−. (You may assume
that x+ > x− + 1.)

x− x+1

pi = (xi, yi)

Figure 5: Robot motion planning.

You are also given a set of missiles in the form of n vertical line segments, each of length 0.2,
that fall down from the sky at a rate of two units per second. Each of these vertical segments
is specified by the coordinates of its lower endpoint at time t = 0. So, if pi = (xi, yi) is the

5

starting position of the ith missile, then at time t is its lower endpoint is located at (xi, yi−2t),
and its upper endpoint is at (xi, yi − 2t+ 0.2). You may assume that x− ≤ xi ≤ x+.

The question is whether it is possible for the robot to move in a manner to avoid all the
missiles. We will explore an algorithm for solving this problem.

(a) A natural way to define the robot’s configuration at any time is as a pair (t, x), where
t is the current time, and x is the location of the robot’s left endpoint. Based on this,
what is the C-obstacle associated with a missile whose starting position is pi (as defined
above)? In other words, describe the set of robot configurations (t, x) such that the robot
intersects this missile. (Please provide low-level details, as opposed, say, to expressing
this as a Minkowski sum.)

(b) Provide a complete characterization of the properties of a path in configuration space
(assuming it exists) that corresponds to a motion plan for the robot that satisfies the
robot’s speed constraints and avoids all the missiles. Be sure to include constraints on
the path’s starting and ending positions and include the robot’s maximum speed.

6

CMSC 754: Fall 2021 Dave Mount

CMSC 754: Final Exam

This exam is closed-book and closed-notes. You may use two sheets of notes (front and back).
Write all answers on the exam paper. If you have a question, either raise your hand or come to the
front of class. Total point value is 135 points. Good luck!

In all problems, unless otherwise stated, you may assume that inputs are in general position.
You may make use of any results presented in class and any well known facts from algorithms
or data structures. If you are asked for an O(T (n)) time algorithm, you may give a randomized

algorithm with expected time O(T (n)).

Problem 1. (35 points) Short-answer questions. Unless requested, explanations are not required.

(a) (5 points) Given a set of points P in R
2, there are k1 edges on P ’s upper hull and k2 edges

on P ’s lower hull. What can we say about the number of vertices on the upper and lower
envelopes of the dual line arrangement P ∗? (Assume the standard dual transformation
we use in class.)

(b) (15 points) For each of the following, indicate whether it can or cannot be solved by
a reduction to a constant number of instances of linear programming of size O(n) in a
space of constant dimension. If it can be, indicate the dimension of the LP instance.
Do not give the LP formulation.

(i) Given a set of n vertical line segments in R
3 (that is, all parallel to the z-axis), does

there exist a plane ℓ that intersects all of these segments?

(ii) Given a set of n vertical line segments in R
2, does there exist a line ℓ that stabs at

least half of these segments?

(iii) Given a set of n points in R
2, compute the slab (region bounded by two parallel

lines) of minimum vertical height that encloses all these points.

(iv) Given a set of n points in R
2, compute the closest pair of points.

(c) (5 points) Given an n-element point set P in R
2, we want to compute the largest circular

disk that has its center in P ’s convex hull (or on its boundary) and contains no points
of P in its interior. Describe a set of O(n) points, computable in O(n log n) time, such
that the optimal center lies at one of these points. (Briefly explain.)

(d) (5 points) In the randomized incremental algorithm for computing a trapezoidal map,
when the ith segment is added, up to constant factors, the expected number of newly
created trapezoids is (select one):

❼ 1

❼ i

❼ log i

❼ n/i

❼ log n

❼ None of these. What is it?

1

x

y
P

R

Figure 1: C-obstacle.

(e) (5 points) You are doing translational motion planning in R
2. The obstacle P is an

axis-aligned rectangle. The robot R is a 45◦ rotation of a square. What is the maximum
number of edges possible in the C-obstacle (P ⊕ (−R))? (Briefly explain.)

Problem 2. (20 points) You are given a set P = {p1, . . . , pn} in R
2. A slab S(a, b−, b+) is the

region between two pair of parallel lines, S(a, b−, b+) = {p : apx + b− ≤ py ≤ apx + b+}. The
height of the slab is the vertical distance between the lines, b+ − b−.

Given a parameter k, where 0 ≤ k ≤ n−3

2
, we say the slab is k-centered if there are k points

lying strictly above the slab and k points lying strictly below the slab (see Fig. 2). We are
interested in the k-centered slab of minimum height.

y = ax + b+

y = ax + b−

height

k = 4

Figure 2: k-Centered slabs.

(a) (5 points) Assuming the standard dual transformation given in class (a, b) ↔ y = ax−b,
describe the dual-equivalent formulation of this problem. That is, what is the slab?
what is its height? what condition is satisfied for the slab be k-centered?

(b) (5 points) Assuming that P is in general position, prove that the minimum height k-
centered slab has three points on its boundary, with two points on one line and one on
the other.

(c) (10 points) Present an efficient algorithm, which given P and k (0 ≤ k ≤ n−3

2
), computes

the minimum-height k-centered slab. Derive your algorithm’s running time and justify
its correctness. (Hint: Plane sweep in the dual arrangement.)

Problem 3. (20 points) Explain how to use/modify range trees to answer the following queries. The
input is an n-element point set P in R

2.

(a) (10 points) A right-triangle query involves a region defined by a right triangle whose
two legs are parallel to the coordinate axes and of equal length, such that the right
angle is in the lower-left corner of the triangle. The query is defined by its lower
left vertex v = (vx, vy) and the length w of its two legs (see Fig. 3(a)). The answer

2

is the number of points that lie within the triangle. Present the data structure and
query algorithm. Derive its space usage and the query time.

x

y

v

Ans: 5

Right-triangle queries Shrinking segment sliding queries

www

www

x

y

Answer

x0

y0

y1

x

y

Answer: null

x0

y0

y1

Figure 3: Range tree queries.

(b) (10 points) In a shrinking segment-sliding query, you are given a vertical line segment
with x-coordinate x0 and endpoints at y-coordinates y0 and y1, where y0 < y1. As
this segment slides to the right it shrinks in height. The lower endpoint of the
segment stays at y = y0, but for each w units the segment slides horizontally, its
height decreases by w. The answer to the query is the first point that is hit by the
sliding-shrinking segment. If the segment slides so far that it shrinks to height zero,
the answer is null (see Fig. 3(b)). Present the data structure and query algorithm.
Derive its space usage and the query time.

Problem 4. (25 points) Consider the range space Σ = (R2, T), where T is the set of all right triangles
whose two legs are parallel to the coordinate axes, so that the right angle is in the lower-
left corner of the triangle (see Fig. 4).

Figure 4: Set system of axis-aligned right triangles.

(a) (5 points) Give an example of a 4-element point set P in R
2 that is shattered by Σ,

and demonstrate why it is shattered. (For preciseness, indicate the coordinates of
the points, but you can present a drawing to illustrate how to shatter them.)

(b) (12 points) Prove that no 5-element point set in R
2 is shattered by Σ. (You can

continue your answer on the top of the next page)

(c) (3 points) What is the VC-dimension of Σ? (No justification needed.)

(d) (5 points) Given a point set P in R
2 with n points, give a (tight) asymptotic upper

bound on the number of distinct subsets of P determined by Σ. (Using the notation
given in class, this is |T|P |. No justification needed.)

Problem 5. (20 points) Given a set P = {p1, . . . , pn} of points in R
d, for each pi ∈ P its farthest

neighbor is the point pj ∈ P from P that is farthest from pi.

3

p1

p2
p3

p4

p5
i: Index of pi’s farthest neighbor:

1 4
2 5
3 5
4 3
5 3

Figure 5: All farthest neighbors.

(a) (10 points) Prove that there must exist at least one pair of points pi, pj ∈ P such
that pj is the farthest neighbor of pi and vice versa. (For example, (p3, p5) above
satisfies this.) Assume by general position that all inter-point distances are distinct.

(b) (10 points) Assuming that the points are in the plane, prove that the farthest neigh-
bor of any point is a vertex of P ’s convex hull.

Problem 6: (15 points) Let P = {p1, . . . , pn} be a set of points in R
d, and let ∆ denote the diameter

of P , that is, the distance between its farthest pair. We say that a pair pi, pj ∈ P is
diametrical if ‖pj−pi‖ = ∆. (Let us ignore general position and imagine that there may
be many diametrical pairs.)

Present an approximation algorithm that, given P , ∆ = diam(P), and ε > 0, counts
the number of pairs that are approximately diametrical. This means that for any pair
pi, pj ∈ P :

❼ if ‖pj − pi‖ = ∆ then the pair must be counted, and

❼ if ‖pj − pi‖ < ∆/(1 + ε) then the pair must not be counted.

Otherwise, your algorithm is free to count or ignore the pair. Justify your algorithm’s
correctness and derive its running time. Hint: WSPDs. Your algorithm should run in
time O(n log n+ n/εd).

4

