
CMSC 754: Fall 2021 Dave Mount

CMSC 754: Midterm Exam

This exam is closed-book and closed-notes. You may use one sheet of notes (front and back).
Write all answers on the exam paper. If you have a question, either raise your hand or come to the
front of class. Total point value is 100 points. Good luck!

In all problems, unless otherwise stated, you may assume that inputs are in general position.
You may make use of any results presented in class and any well known facts from algorithms
or data structures. If you are asked for an O(T (n)) time algorithm, you may give a randomized
algorithm with expected time O(T (n)).

Problem 1. (20 points; 4–6 points each) Short-answer questions.

(a) In our plane-sweep algorithm for computing line segment intersections, we were careful
to store only those intersection points involving pairs of segments that are adjacent on
the current sweep line. Why did we do this?

(b) You are given four points a, b, c, d in R2. Using just orientation tests, show how to test
whether the line segment ab intersects the line segment cd. (Briefly explain.)

(c) True or False: If a simple polygon is both x-monotone and y-monotone, then it is
monotone with respect to any direction. (Briefly explain your answer.)

(d) Consider the line arrangement shown in the figure below. Suppose that we insert the
line `i into this arrangement. Indicate (by redrawing the figure) which edges of the
arrangement are traversed by the insertion algorithm presented in class.

`i

Figure 1: Inserting a line into an arrangement.

Problem 2. (15 points) The objective of this problem is to explore independent sets in triangula-
tions. Throughout this problem, let P = {p1, . . . , pn} denote a set of n sites in the plane, and
let T (P ) denote an arbitrary (not necessarily Delaunay) triangulation of P (see Fig. 2(a)).
Define the degree of any site p ∈ P , denoted deg(p), to be the number of edges of T (P )
incident on it.

(a) (5 points) Prove that there exists a constant c, such that
∑

p∈P deg(p) ≤ cn, for all
sufficiently large n.

(Recall that if there are h points on the convex hull, there are 2n− h− 2 triangles and
3n − h − 3 edges. Ideally, your answer should apply for any value of h, but for partial
credit, you may assume that h has a specific value of your choosing.)
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deg(p) = 4 independent
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Figure 2: Independent sets in a triangulation.

(b) (5 points) Let c be the constant derived in your solution to (a). We say that a site p ∈ P
has high degree if deg(p) ≥ 3c, and otherwise it has low degree. Let P ′ ⊆ P be the subset
of low degree sites of P . Prove that there exists a constant c′ (which may depend on c)
such that, for all sufficiently large n, |P ′| ≥ n/c′.

(c) (5 points) Define an independent set to be a subset P ′′ ⊆ P such that no two sites in P ′′

are adjacent in T (P ) (see Fig. 2(b)). Given the previous constants c and c′, prove that
there exists a constant c′′ > 1 (depending on c and c′) such that, for all sufficiently large
n, P contains an independent set of size at least n/c′′ consisting entirely of low-degree
sites.

Problem 3. (30 points) In parts (a) and (c) below, you are asked to give a reduction to linear
programming (LP). In each case, explain how the problem is formulated as an instance of LP
(and what the dimension of the space is), and how the result of the LP (feasible, infeasible,
unbounded) is to be interpreted in answering the problem.

` : y = ax + b
ci

d−i

d+i

(b) (c)

h
hh

h`

(a)

pi

1
slab about `
of height h

Figure 3: Stabbing segments.

(a) (10 points) Given a line `, define the slab of height h centered about ` to be the region
bounded between the two lines parallel to `, one h units above and on h units below (see
Fig. 3(a)).

You are given a set of n vertical line segments in the plane S = {s1, . . . , sn}, where each
segment si is described by three values, its x-coordinate ci, its upper y-coordinate d+i
and its lower y-coordinate d−i (see Fig. 3(b)).

2



Apply LP to determine whether there exists a line ` : y = ax + b that intersects all of
these segments. Further, if such a line exists, return the line ` with the property that it
is the center of the slab of maximum height h that cuts through all the segment. (You
can solve just the existence problem for partial credit.)

(b) (10 points) Suppose that your LP from part (a) reveals that there is no line that stabs
all the segments. Instead, you decide to solve the following optimization problem. Given
a set of vertical line segments S (as in part (a)), find a line ` : y = ax− b that intersects
the maximum number of segments of S.

You decide to solve this problem in the dual setting. Using the dual transformation
given in class, explain what the equivalent optimization problem is in the dual setting.
(That is, explain how to dualize the line segments of S, how to dualize the line `, and
what property the dual point `∗ must satisfy so that we are effectively solving the same
optimization problem.) You do not need to explain how to solve this dual problem.

(c) (10 points) You are given a collection of n axis-aligned unit squares in the plane. The
squares are centered at the points P = {p1, . . . , pn}, where pi = (ci, di) (see Fig. 3(c)).

Apply LP to determine whether there exists a line ` : y = ax + b that intersects all of
these squares. If it exists, return any such line.

Problem 4. (20 points) In this problem, we will consider two query problems involving a set of
n circular disks in the plane (which may overlap), each of unit radius. Let P = {p1, . . . , pn}
denote their centers, and let us assume that at least one of these disks contains the origin O.

For each of the parts below, explain how to preprocess these disks into a data structure
to answer the specified query. In each case, your data structure should use O(n) space,
be constructed in O(n log n) time, and answer queries in O(log n) time. Briefly justify the
correctness and running times of your solutions.

(a) (15 points) Given a query point q, determine whether it is possible to move q to the
origin, so that the path lies entirely within the union of these disks. For example, in
Fig. 4(a), q1 can reach the origin O but q2 cannot. Note that if q does not lie within any
disk, the answer is trivially “no”.

q1

q2

(a)

s1

s2

(b)

t1
t2

O

Figure 4: Motion planning among disks.

(b) (5 points) Given two query points s and t, determine whether it is possible to move from
s to t, so that the path lies entirely within the union of these disks. For example, in
Fig. 4(b), s1 can reach t1, but s2 cannot reach t2. (Hint: You can explain the changes
you would make to the solution from (a).)
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Problem 5. (15 points) This problem is inspired from applications in surveillance. Given a simple
polygon P , we say that two points p and q are visible to each other if the open line segment
between them lies entirely within P ’s interior. We allow for p and q to lie on P ’s boundary,
but the segment between them cannot pass through any vertex of P (see Fig. 5(a)).

visible

visible

not visible

not
visible

(a)

P P

(b)

Figure 5: (a) Visibility and (b) a guarding set of size 9 for P .

A guarding set for P is any set of points G, called guards, lying in P (either on its boundary
or in its interior) such that every point in P ’s interior is visible to at least one guard of G.
Note that guards may be placed on vertices, along edges, or in P ’s interior (see Fig. 5(b)).

Prove that there exists a constant c ≥ 1 such that (for all sufficiently large n) every n vertex
simple polygon P has a guarding set of size at most n/c. For full credit, show that c = 3
works. For partial credit, show that some smaller value of c (e.g., c = 2) works. You do not
need to show how to compute this set. (Hint: Decompose the polygon into simpler pieces.)
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