
CMSC 754: Fall 2021 Dave Mount

Homework 2: Duality, Linear Programming, and Point Location

Handed out Thursday, Oct 14. Due: 9:30am, Tuesday, Oct 26 (submission through Gradescope as with
Homework 1). No late homeworks will be accepted, so please turn in whatever you have completed by the
due date. Unless otherwise specified, you may assume that all inputs are given in general position. Also,
when asked to give an algorithm with running time O(f(n)), it is allowed to give a randomized algorithm
with expected running time O(f(n)).

Problem 1. Consider the two segments s1 = p1t1 and s2 = p2t2 shown in Fig. 1.

s1

s2

p2

p1

t2t1

Figure 1: Problem 1: Trapezoidal map and point location.

(a) Show the (final) trapezoidal map for these two segments, assuming the insertion order 〈s1, s2〉.
(b) Show the point-location data structure resulting from the construction given in class, assuming

the insertion order 〈s1, s2〉. (We will give partial credit if your data structure works correctly,
even though it does not match the construction given in class.)

Please follow the convention given in class for the node structure. (In particular, for y-nodes, the
left (resp., right) child corresponds to the region above (resp., below) the segment.)

Problem 2. Euler’s formula is useful for computing the combinatorial properties of planar subdivisions.
A planar graph (or more accurately, a cell complex) is a subdivision of the plane into vertices (0-
dimensional), edges (1-dimensional), and faces (2-dimensional). Let v, e, and f denote the number of
vertices, edges, and faces, respectively, in a given cell complex. (Note that f includes the unbounded
face that extends to infinity.) Euler’s formula states that these quantities are related as

2 = v − e+ f

For example, in the Fig. 2(a) we show a triangulation of a set of v = 16 vertices with h = 10 vertices
on the convex hull. In Fig. 2(b) we show a quadrilateral cell complex. Using Euler’s formula, answer
each of the following questions.

v = 16

h = 10

(a) (b)

v = 16

h = 10

e = 35

t = 20

f = 21

e = 25

q = 10

f = 11

Figure 2: Problem 2: Applications of Euler’s formula.

1

(a) Given a triangulation with v vertices, where h of these lie on the convex hull, use Euler’s formula
to derive the formula for the number of triangles t and the number of edges e in the triangulation
as functions of v and h. (Hints: Observe that 3t = 2e − h. This follows because 3t counts the
total number of edges incident to all the triangles, and this counts every edge twice except the h
edges that form the convex hull, which are only counted once. Also observe that the number of
faces is f = t+ 1, because the infinite exterior face is counted as a face.)

(b) Given a quadrangulation (a cell complex where each face has four edges, excluding the face lying
outside the convex hull) with v vertices, where h of these lie on the convex hull, use Euler’s
formula to derive the formula for the number of quadrangles q and the number of edges e in the
quadrangulation as functions of v and h.

(c) Explain why your answer to (b) implies that a quadrilateralization does not exist if the number
of hull vertices is odd.

Problem 3.

(a) You are given two sets of points, red and blue, in the plane. Let R = {r1, . . . , rn} be the red
points and B = {b1, . . . , bn} be the blue points. The problem is to determine a pair of parallel,
nonvertical lines `R and `B such that all the points of R lie on or above `R, all the points of B
lie on or below `B , and the signed vertical distance from `B to `R is as large as possible. (More
formally, if yB and yR are the y-intercepts of these lines, we want to maximize yR − yB .)

Note that if `R lies above `B , this distance is positive and if (as shown in the figure below) `R
is below `B , this distance is negative. (When negative, the objective is to minmize the absolute
value of the distance.) Present an O(n) time algorithm to solve this problem. (Hint: Reduce to
linear programming.)

∈ R

∈ B

(a)

K

αK + t

t

(b)

`B

`R

v1

v2
v3

v4
K

v1

v2
v3

v4

Figure 3: Problem 3: (a) Separating point sets and (b) enclosing points by a polygonal shape.

(b) You are given a convex polygon K in R2, presented by its vertices in counterclockwise order
〈v1, . . . , vk〉. We assume that the origin is contained in K’s interior (see Fig. 3(b)). Given a
positive real scalar α and a translation vector t = (tx, ty), let t+ αK denote the convex polygon
that arises by scaling all the vertices of K uniformly by a factor of α (about the origin) and then
translating them by vector t (see Fig. 3(c)). Such a body is called a homothet of K of scale α.

Present an algorithm, which given a convex polygon K (as described above) and an n-element
point set P = {p1, . . . , pn} in R2, computes the homothet of K of smallest (positive) scale that
contains all the points of P . This can be solved in O(kn) time.

Hint: The reduction to LP involves multiple steps. Here are some suggestions:

2

(i) Explain how to express K as the intersection of k halfplanes {h1, . . . , hk}.
(ii) Consider any halfplane h = {(x, y) | ax + by ≤ c}, and let h′ = t + αh denote the halfplane

that arises by scaling the points of h by α (about the origin) and translating by the vector t.
Given a point p = (px, py). Prove that p ∈ h′, if and only if

a
px − tx
α

+ b
py − ty
α

≤ c.

(iii) Use (i) and (ii) to obtain anO(kn) time algorithm that computes the minimum-scale homothet
of K enclosing P .

Since we have not done any examples of linear programming applications in class, here is simple example
of how to answer one of these problems.

Sample Problem: Present an O(n) time algorithm, which given two sets of points R = {r1, . . . , rn}
and B = {b1, . . . , bn}, both in R3, determines whether their exists a plane h in R3 such that all
the points of R lie on or above h and all the points of B lie on or below h.

Sample solution: We reduce the problem to linear programming in R3. Let’s assume that each
ri ∈ R is given in coordinate form as (ri,x, ri,y, ri,z) and similarly for B. Let’s model h by the
equation z = ax + dy + e, for some real parameters a, d, and e. To enforce the condition that
each ri lies on or above h and each bj lies on or below it, we add the constraints

ri,z ≥ ari,x + dri,y + e, for 1 ≤ i ≤ n
bj,z ≤ abj,x + dbj,y + e, for 1 ≤ j ≤ n.

We then invoke LP with 2n constraints in R3 (with the variables (a, d, e)). Since this is a yes-no
answer, we don’t really care about the objective function. We can set it arbitrarily, for example,
“maximize e” (which is equivalent to using the objective vector c = (0, 0, 1)).

We interpret the LP’s result as follows. If the result is “infeasible”, then we know that no such
plane exists. If the answer is “feasible” or “unbounded”, then we assert that such a plane exists
(assuming general position). This is clearly true if the result is “feasible”, since we can just take
h to be the plane associated with the optimum vertex (a, d, e). If the result is “unbounded”, then
the plane is vertical, but there exists a perturbation such that R lies above and B lies below.

Problem 4. The objective of this problem is to explore some interesting properties of trapezoidal maps
(which apply more generally to many geometric structures). Throughout this problem, S = {s1, . . . , sn}
denotes a set of n nonintersecting, nonvertical line segments in the plane. Let T (S) denote the trape-
zoidal map of these segments. We say that a trapezoid ∆ ∈ T (S) is incident on a segment s ∈ S if
s borders ∆ from above or below, or if one of s’s endpoints bounds ∆ from the left or the right (see
Fig. 2(a)). For s ∈ S, define deg(s) to be the number of trapezoids of T (S) that are incident on s (in
Fig. 4(a), deg(s) = 7).

(a) Given any set S of n segments, prove that there exists a constant c, such that, for all sufficiently
large n,

∑
s∈S deg(s) ≤ cn.

(b) Let c be the constant derived in your solution to (a). We say that a segment s ∈ S is long if
deg(s) ≥ 2c, and otherwise we say that s is short. Let S′ ⊆ S be the set of short segments of S.
Prove that there exists a constant c′ (which may depend on c) such that, for all sufficiently large
n, |S′| ≥ n/c′.

(c) We say that two segments si, sj ∈ S are adjacent if there exists a trapezoid ∆ ∈ T (S) that is
incident on both si and sj . Define an independent set of S to be a subset of S whose elements
are pairwise non-adjacent (see Fig. 4(b)). Given the previous constants c and c′, prove that there

3

(a) (b)

s

Trapezoids incident on s and incident trapezoids
Independent set of segments

Figure 4: Problem 4: Independent sets in a trapezoidal map.

exists a constant c′′ > 1 (depending on c and c′) such that, for all sufficiently large n, S contains
an independent set of size at least n/c′′ consisting entirely of short segments. (Hint: Use a greedy
approach.)

You might wonder why we care about independent sets at all. The existence of large independent
sets is of critical to the efficiency of many algorithms based on divide-and-conquer. The idea is to
find a large independent set, remove it, and solve the problem recursively on the remaining objects.
(Since the number of remaining objects decreases by a constant factor, these total time for all these
recursive calls will be small.) When the recursion returns, add back the elements of the independent
set, and solve the problem. Since the various pieces are independent of each other, the solutions of
these independent subproblems will not interact with each other.

Problem 5. You are given two vertical lines at x = 0 and x = 1 and a set of n (nonvertical) line segments,
si = aibi. The left endpoint ai of each segment lies on a vertical line x = 0 and the right endpoint
bi lies on the vertical line x = 1 (see Fig. 5(a)). Scanning from left to right, whenever two segments
intersect, the segment with the lower slope “terminates” and the one with the higher slope continues on
(see Fig. 5(b)). Let us also add an imaginary “sentinel segment” s0 that runs along the right vertical
line.

Observe that for 1 ≤ i ≤ n, every segment si is terminated by some other segment. If the segment
survives to the right side, then it is terminated by segment 0. (For example, in Fig. 5(b), segment
1 is terminated by segment 2, segments 2, 3, and 4 are all terminated by segment 5, segment 5 is
terminated by ∞, and so on.)

(a) Assuming that the segments are given in sorted order according to their left endpoints (say, from
top to bottom as shown in our figure), present an efficient algorithm that determines the n-element
list of the indices of the segment terminators. (For example, for the input shown in the figure,
the output would be 〈2, 5, 5, 5, 0, 7, 8, 0〉.) Hint: O(n) time is possible.

(b) Suppose that we instead insert the segments in random order. A new segment s = ab runs from
left to right until it is terminated by the first segment of higher slope that it intersects. In addition
all the segments from the existing structure of lower slope that intersect s are now terminated by
s. (For example, the blue segment s in Fig. 5(c) and (d) changes the termination points of three
existing segments, as indicated by the red arrows.)

Prove that there exists a constant c such that, if the segments are inserted in random order, the
expected number of existing segments that change their termination point is at most c. (Hint:
Apply a backwards analysis.)

4

a8

a7

a6
a5

a4

a3
a2

a1

b6
b3

b4

b1

b7

b2

b8

b5

a8

a7

a6
a5

a4

a3
a2

a1

b6
b3

b4

b1

b7

b2

b8

b5

(a) (b)

2
5

5

7

5

8

0

0

x = 0 x = 1 x = 0 x = 1

(c) (d)

s s

a

b

Figure 5: Problem 5(a) and (b): Terminating segments

(c) Recall that in Graham’s scan, we computed the upper hull of a set of points by adding the points
in left-to-right order. Whenever a point pi was added, we determined the point pj of tangency
with respect to the current upper hull, and we added the edge pipj . We removed all points that
were “shadowed” by the newly added edge. If you look at the entire history of edges generated
by Graham’s scan, you obtain a tree-like structure, as shown in Fig. 6 below.

p1
p2

p3
p4

p5 pn

pi
pj

Figure 6: Problem 5(c): Graham’s scan history

Prove that there is a equivalency between the tree-like structures of Fig. 5(b) and Graham-scan
structure from Fig. 6. In particular, given any set of points P = {p1, . . . , pn} in the plane, explain
how to map these to a set of segments S = {s1, . . . , sn} such that the edge pipj is added by
Graham’s scan if and only if segment si is terminated by segment sj .

Hint: This will involve some form of point-line duality, but you may need to modify the duality
transformation given in class. It may also be necessary to change the x-coordinates associated
with the left and right sides of the vertical band in the segment-termination problem, even so far
as to take the limit as they tend to infinity.

Problem 6. You are given a collection of n nonintersecting circular disks in the plane, each of unit radius.
Let P = {p1, . . . , pn} denote their center points. Preprocess these disks into a data structure to answer
the following queries. Given a unit disk qi (designated by its center point), determine whether it is
possible for this disk to escape from the others, meaning that it is possible to move this disk arbitrarily
far away from the others without intersecting or moving any of the disks of P .

For example, given the disks in Fig. 7, the disk q1 can escape from the others, while q2 cannot. Present
an O(n log n) that constructs such a data structure. Your data structure should have space O(n) and
should be able to answer queries in time O(log n). (Hint: Use Voronoi diagrams and point location.)

Challenge Problem. (Challenge problems count for extra credit points. These additional points are fac-
tored in only after the final cutoffs have been set, and can only increase your final grade.)

5

q1

q2

Figure 7: Problem 6. Disk q1 can escape while q2 cannot.

Present a randomized incremental algorithm for structure described in Problem 5(b). (In 5(b) you
were asked just to show that the expected number of changes is O(1). Here you must compute those
changes and update the structure.)

Assume that your input is given as a collection of segments S = {s1, . . . , sn}, where the endpoints lie
on the vertical lines x = 0 and x = 1. Randomly permute segments and insert them one-by-one into
the tree structure described in the problem. The aim is to produce the final structure in expected time
O(n log n).

You may create any additional auxiliary structures you like in order to help achieve the desired running
time.

Prove the correctness of your algorithm and derive its expected running time.

6

