
CMSC 754: Fall 2021 Dave Mount

Homework 4: Sampling, Motion Planning, and More

Handed out Tue, Nov 30. Due, Tue, Dec 14, 9:30am. (There is no class that day, but I’ll record pretend
lecture where I will discuss the solutions.) Late homeworks are not accepted (unless an extension has been
prearranged) so please turn in whatever you have completed by the due date. Unless otherwise specified,
you may assume that all inputs are in general position. Whenever asked to give an algorithm running in
O(f(n)) time, you may give a randomized algorithm whose expected running time is O(f(n)).

Problem 1. The objective of this problem is to investigate the VC-dimension of some range spaces. Recall
that a range space Σ is a pair (X,R), where X is a (finite or infinite) set, called points, and R is a
(finite or infinite) family of subsets of X, called ranges.

For each of the following range spaces, derive its VC-dimension and prove your result. (Note that in
order to show that the VC-dimension is k, you need to give an example of a k-element subset that is
shattered and prove that no set of size k + 1 can be shattered.) Throughout, you may assume that
points are in general position.

(a) Σ = (R2,W ), where W consists of all horizontal wedges. A horizontal wedge is the region bounded
between two rays, one horizontal and the other of arbitrary (finite) slope (see Fig. 1(a)). (It is
my intention that the wedge angle is acute, but if you want to consider obtuse wedges instead,
that is fine with me.)

(b) Σ = (R2,W ′), where W ′ consists of all horizontal double wedges. A horizontal double wedge is
the region bounded between two lines, one horizontal and the other of arbitrary (finite) slope. It
consists of the points that lie above one line and below the other (see Fig. 1(b)).

Hint: Getting a tight upper bound on the VC-dimension seems to be very difficult. For this part,
it suffices to come up with any constant upper bound, by whatever method you like. (See, e.g.,
the material on canonical shapes from the Lecture 20 Notes.) Deriving a better bound is left as
the Challenge Problem.

(a) (b) (c)

Figure 1: VC-Dimension of some range spaces.

Also, answer the following.

(c) Prove that the range space Σ = (R2, C) consisting of convex polygons in the plane has unbounded
VC-dimension (see Fig. 1(c)). That is, show that for any n > 0, there exists an n-element point
set that is shattered by the range space of convex polygons.

Here is a sample solution for parts (a) and (b), to give you some idea of what I am looking for. (It
would be even nicer if you include some figures.)

Example: Consider the range space Σ = (R2, H) where H consists of all closed horizontal halfspaces,
that is, halfplanes of the form y ≥ y0 or y ≤ y0. We claim that VC(Σ) = 2.
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VC(Σ) ≥ 2 : Consider the points a = (0,−1) and b = (0, 1). The ranges y ≥ 2, y ≥ 0, y ≤ 0 and y ≤ 2
generate the subsets {∅, {a}, {b}, {a, b}}, respectively. Therefore, there is a set of size two that is
shattered.

VC(Σ) < 3 : Consider any three element set {a, b, c} in the plane. Let us assume that these points
have been given in increasing order of their y-coordinates. Observe that any horizontal halfplane
that contains b, must either contain a or c. Therefore, no 3-element point set can be shattered.

Problem 2. In this problem we will explore an idea for constructing a weak ε-net for a set of P points in
the plane. By a “weak” ε-net, we mean a set of points that satisfies the standard definition of an ε-net,
but it can be formed from any set of points, not just the points of P . We’ll give the broad outline,
and you will fill in the details.

You are given n points P in R2. Let us make the general-position assumption that there are no duplicate
x- or y-coordinates. We construct a set S ⊂ R2 as follows. We first compute an integer k ≥ 1, and let
m = bn/kc. Next, we sort the points of S in increasing order according to their x-coordinates, and let
〈x1, . . . , xn〉 denote the resulting sorted sequence of coordinates. We take every kth element from this
sorted sequence:

X = {xk, x2k, x3k, . . . , xmk}.

We repeat the same process for the y-coordinates, by first sorting them in increasing order as 〈y1, . . . , yn〉,
and setting

Y = {yk, y2k, y3k, . . . , ymk}.

(Note that we use the same value of k and m in defining both X and Y .) Finally, we set S = X × Y ,
that is, for 1 ≤ i, j ≤ m, we include the point (xi, yj) into S. Clearly, S has m2 elements. Observe
that while they are based on the coordinates of the points of P , the points of S need not belong to P .
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Figure 2: Weak ε-net construction (for k = 5).

(a) For each of the following range spaces, answer the following question. If a range from the set
contains no elements of S, what is the maximum number of elements of P that it might contain?
(That is, if Q∩S = ∅ then how large can |Q∩P | be?) In each case justify your answer. (Express
your answer precisely, not as an asymptotic function.)

(R) Axis-aligned rectangles (of any width and height).

(T) Axis-aligned right triangles. This is defined to be any right triangle such that the legs (i.e.,
the sides incident to the 90◦ angle) are parallel to the x- and y-axes. The hypotenuse can
have any slope.

(B) Euclidean balls (of any radius).
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(b) Suppose you are given a parameter ε > 0. Based on your answers to (R), (T), and (B) above,
what value should we set k to (as a function of n and ε) in the above construction so that the
resulting set S is an ε-net (in the weak sense) for P . We want k to be as large as possible, so that
the resulting ε-net is as small as possible.

(c) Suppose that further, we would like a weak ε-sample. For each of the range spaces, (R), (T), and
(B) above, is there any value of k such that the resulting set S is an ε-sample of P , where the
size of S is a function of ε (but not n)? If so, give this value and justify its correctness. If not,
explain why the resulting set S’s size must depend on n.

Problem 3. This problem has many parts, but each answer is very short, and sentence, formula, or short
derivation suffices for most.

Iterative reweighting (seen in Lecture 19) can be used to solve a number of geometric optimization
involving set systems of constant VC-dimension. In this problem, we will derive an algorithm for
computing the circular disk enclosing a set of n points in R2. (We will derive an O(n log n) time
solution, but there is actually an O(n) time more efficient solution based on a randomized incremental
approach.)

Given a set of points P ⊂ R2, define the minimum enclosing ball, MEB(P ), to be the circular disk B of
smallest radius that contains P . Generally, MEB(P ) is determined by a constant number of points P ∗

on the boundary of the ball, called the basis (see Fig. 3(a)). (There at most three in R2 and generally
at most d + 1 points in Rd). The following two facts are easy to prove:

� For any set S such that P ∗ ⊆ S ⊆ P , MEB(S) = MEB(P ∗) (see Fig. 3(b)).

� For any set S such that S ⊆ P , radius(MEB(S)) ≤ radius(MEB(P )) (see Fig. 3(c)). (We cannot
infer that MEB(S) ⊆ MEB(P ), since one disk might “bulge out” from the other.)
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Figure 3: Reweighting algorithm for MEB.

Suppose that we have access to a black-box algorithm for computing the MEB, but it is very slow
and can only be applied to sets of constant size. Our algorithm operates by computing an ε-net S of
constant size for P with respect to the set system where the ranges are the points of P that lie outside
of a circular disk. (We will see that this set system has constant VC-dimension.) We then invoke our
slow MEB algorithm to compute the MEB for S. If the resulting ball contains P , we are done. If not,
we double the weights of all the points of P outside this ball, and repeat. Here is the algorithm:

(1) Set ε← “fill this in later”. For each p ∈ P , set w0(p) = 1.

(2) Repeat for i← 1, 2, . . .

(a) Let Si be a weighted ε-net for P of size O((1/ε) log(1/ε)) with respect to the weights wi−1
for ranges consisting of points lying outside a circular disk.

(b) Let Bi ← MEB(Si)
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(c) If P ⊆ Bi, then return Bi as the MEB (success)

(d) Otherwise, for each p ∈ P \Bi, set wi(p)← 2wi−1(p).

We will prove that this algorithm is correct (subject to a suitable choice of ε).

(a) Consider any set system (X,R). The complimentary set system is (X,R), where R is defined as
follows. For each R ∈ R, R contains the compliment set R = X \R.

Prove that if (X,R) has VC-dimension d, then its compliment (X,R) also has VC-dimension d.
(Given the fact that the set system of Euclidean ball ranges has constant VC-dimension, this
implies that the set system of points outside a Euclidean ball also has the same VC-dimension.)

(b) To establish (partial) correctness, prove that if in step 2(c), if the ball Bi = MEB(Si) contains all
the points of P , then Bi = MEB(P ).

(c) Prove that after i (unsuccessful) iterations, Wi(P ) ≤ n(1 + ε)i. (Using the fact that 1 + x ≤ ex,
it further follows that Wi(P ) ≤ neεi.)

(d) Suppose that the ith iteration is not successful. Prove that there exists at least one point of the
basis P ∗ that does not lie in Bi.

(e) Using (d), prove that after i (unsuccessful) iterations, Wi(P
∗) ≥ 2i/3. (Hint: You may use the

fact given in Lecture 19 that the growth rate is slowest if the points of P ∗ are doubled equally
often.)

(f) Based on (c) and (e), prove that i ≤ lg n/((1/3)− ε lg e).

(g) Based on (f), specify a (constant) value of ε such that the algorithm is guaranteed to terminate
within O(log n) iterations.

(h) Assuming that an ε-net can be computed in O(n) time, show that this algorithm runs in time
O(n log n).

Hint: The analysis is structurally similar to the one of Lecture 19 on the iterative reweighting hitting
set algorithm. I would suggest consulting the latex lecture notes, which has a bit more details than
the hand-written notes.

Problem 4. In this problem, we will be planning the motion of a line-segment robot R in the plane amidst
a collection of obstacles consisting of n disjoint obstacles P = {P1, . . . , Pn}. Each obstacle is an axis-
parallel rectangle. In particular Pi = [x−i , x

+
i ] × [y−i , y

+
i ]. The robot is 2-units long, and its reference

position oriented vertically with its midpoint at the origin (see Fig. 4(a)). The robot is restricted to
two types of motion:

Translation: It can translate through a vector t = (tx, ty), moving its reference point from its current
position p to p + t.

Rotation: The robot can rotate about its reference point by either +90◦ (that is, counterclockwise)
or −90◦ (that is, clockwise). When a rotation is performed, the entire circular arc swept out by
the any point on the segment must be free of any obstacles. (Think of the segment as spinning
in the plane—not picking it up, rotating it, and putting it down.)

Therefore, the robot’s configuration consists of a point (x, y) where its center point is located and
its orientation o ∈ {V,H}, where “V ” indicates that the robot is parallel with the y-axis and “H”
indicates that it is parallel with the x-axis.

A motion plan consists of a sequence of translations and rotations. Note that the robot either translates
or rotates. It cannot translate while rotating.

(a) For each of the possible orientations of the robot (“H” or “V ”), describe the shape of the corre-
sponding collision obstacle CR(Pi) (in terms of the parameters x−i , x

+
i , y

−
i , y

+
i ).

4



(a) (b)
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Figure 4: Motion planning for a rotating/translating segment.

(b) For each of the possible orientations of the robot (“H” or “V ”), describe the shape of the corre-
sponding collision obstacle CR(Pi) in the cases of +90◦ (counterclockwise) and −90◦ (clockwise)
rotation (in terms of the parameters x−i , x

+
i , y

−
i , y

+
i ). There are four shapes in all and their

boundaries will involve circular arcs.

(c) Given your answers to (a) and (b), present an algorithm to determine whether there exists a
motion plan from an arbitrary starting placement configuration s = (xs, ys, os) to a given target
t = (xt, yt, ot). You may assume that both s and t are collision-free.

Hint: I’m really looking for a high level description of how to combine reachability among the
various collision obstacles. Efficiency is not a huge consideration, but your solution should run in
polynomial time in n.

Challenge Problem. Provide a better upper bound on the VC-dimension for horizontal double wedges.
(This is intentionally open-ended, and you don’t need to have the upper bound exact to get full credit
for this problem.)
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