
CMSC 754: Fall 2021 Dave Mount

Sample Problems for the Midterm Exam

The midterm exam will be this Thursday, Oct 28 in class. It will be closed-book and closed-
notes, but you may use one sheet of notes (front and back).

Unless otherwise stated, you may assume general position. If you are asked to present an
O(f(n)) time algorithm, you may present a randomized algorithm whose expected running time is
O(f(n)). For each algorithm you give, derive its running time and justify its correctness.

Disclaimer: The following sample problems have been collected from old homeworks and
exams. Because the material and order of coverage varies each semester, these problems do not
necessarily reflect the actual length, coverage, or difficulty of the midterm exam.

Problem 0. Expect a problem asking you to work through all or part of an algorithm that was
presented in class on a specific example.

Problem 1. Give a short answer to each question (a few sentences suffice).

(a) Explain how to use at most three orientation tests to determine whether a point d lies
within the interior of a triangle 4abc in the plane. You do not know whether 4abc is
oriented clockwise or counterclockwise (but you may assume that the three points are
not collinear).

(b) Let P be a simple polygon with n sides, where n is a large number. As a function of
n, what is the maximum number of scan reflex vertices that it might have? Draw an
example to illustrate.

(c) A convex polygon P1 is enclosed within another convex polygon P2 (see Fig. 1(a)).
Suppose you dualize the vertices of each of these polygons (using the dual transform
given in class, where the point (a, b) is mapped to the dual line y = ax− b). What can
be said (if anything) about the relationships between the resulting two sets of dual lines.

P2

P1

(a) (b)

Figure 1: Problems 1(d) and 1(e).

(d) Any triangulation of any n-sided simple polygon has exactly n − 2 triangles. Suppose
that the polygon has h polygonal holes each having k sides. (In Fig. 1(b), n = 10, h = 2,
and k = 4). As a function of n, h and k, how many triangles will such a triangulation
have? Explain briefly.
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(e) What was the importance of the Zone Theorem in our incremental algorithm for building
line arrangements in the plane?

(f) Consider the linear-programming algorithm given in class for n constraints in dimension
2. In class we showed that the expected-case running time of the algorithm is O(n).
What is the worst-case running time of the algorithm? Briefly justify your answer (in a
sentence or two).

(g) It is a fact that if P is a uniformly distributed random set of n points in a circular disk
in the plane, the expected number of vertices of P ’s convex hull is Θ(n1/3). That is, the
lower and upper bounds are both within some constant of n1/3 for large n.

What is the average-case running time of Jarvis’s algorithm for such an input? (If you
forgot the running time of Jarvis’s algorithm, we will give it to you for a 50% penalty
on this problem.)

(h) Given a set P of n points in the plane, what is the maximum number of edges in P ’s
Voronoi diagram? (For full credit, express your answer up to an additive constant.)

(i) When the ith site is added to the Delaunay triangulation using the randomized incre-
mental algorithm, what is the worst-case number of edges that can be incident on the
newly added site? What can you say about the expected-case number of such edges
(assuming that points are inserted in random order)?

(j) An arrangement of n lines in the plane has exactly n2 edges. How many edges are there
in an arrangement of n planes in 3-dimensional space? (Give an exact answer for full
credit or an asymptotically tight answer for half credit.) Explain briefly.

Problem 2. For this problem give an exact bound for full credit and an asymptotic (big-Oh)
bound for partial credit. Assume general position.

(a) You are given a convex polygon P in the plane having nP sides and an x-monotone
polygonal chain Q having nQ sides (see Fig. 2(a)). What is the maximum number of
intersections that might occur between the edges of these two polygons?

(b) Same as (a), but P and Q are both polygonal chains that are monotone with respect to
the x-axis (see Fig. 2(b)).

(a)

P

Q

Q

P

(b)

Figure 2: Maximum number of intersections.

(c) Same as (b), but P and Q are both monotone polygonal chains, but they may be
monotone with respect to two different directions.

Problem 3. A simple polygon P is star-shaped if there is a point q in the interior of P such
that for each point p on the boundary of P , the open line segment qp lies entirely within
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the interior of P (see Fig. 3). Suppose that P is given as a counterclockwise sequence of its
vertices 〈v1, v2, . . . , vn〉. Show that it is possible to determine whether P is star-shaped in
O(n) time. (Note: You are not given the point q.) Prove the correctness of your algorithm.

P P

q

Figure 3: Determining whether a polygon is star-shaped.

Problem 4. A slab is the region lying between two parallel lines. You are given a set of n slabs,
where each is of vertical width 1 (see Fig. 4). Define the depth of a point to be the number
of slabs that contain it. The objective is to determine the maximum depth of the slabs using
plane sweep. (For example, in Fig. 4 the maximum depth is 3, as realized by the small
triangular face in the middle.)
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Figure 4: Maximum depth in a set of slabs.

We assume that the slabs lie between two parallel lines at x = x0 and x = x1. The ith slab is
identified by the segment piqi that forms its upper side (and the lower side is one unit below
this). Let I denote the number of intersections between the line segments (both upper and
lower) that bound the slabs. Present an O((n + m) log n)-time algorithm to determine the
maximum depth. (Hint: Use plane-sweep.)

Problem 5. Consider the following randomized incremental algorithm, which computes the small-
est rectangle (with sides parallel to the axes) bounding a set of points in the plane. This
rectangle is represented by its lower-left point, low, and the upper-right point, high.

(1) Let P = {p1, p2, . . . , pn} be a random permutation of the points.

(2) Let low[x] = high[x] = p1[x]. Let low[y] = high[y] = p1[y].

(3) For i = 2 through n do:
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(a) if pi[x] < low[x] then (∗) low[x] = pi[x].

(b) if pi[y] < low[y] then (∗) low[y] = pi[y].

(c) if pi[x] > high[x] then (∗) high[x] = pi[x].

(d) if pi[y] > high[y] then (∗) high[y] = pi[y].

Clearly this algorithm runs in O(n) time. Prove that the total number of times that the
“then” clauses of statements 3(a)–(d) (each indicated with a (∗)) are executed is O(log n) on
average. (We are averaging over all possible random permutations of the points.) To simplify
your analysis you may assume that no two points have the same x- or y-coordinates.

Problem 6. You are given a set of n vertical line segments in the plane S = {s1, . . . , sn}, where
each segment si is described by three values, its x-coordinate xi, its upper y-coordinate y+i
and its lower y-coordinate y−i . Present an efficient an algorithm to determine whether there
exists a line ` : y = ax + b that intersects all of these segments (see Fig. 5). Such a line is
called a transversal. (Hint: O(n) time is possible.) Justify your algorithm’s correctness and
derive its running time.

xi

y−i

y+i

` : y = ax + b

Figure 5: Existence of a transversal.

Problem 7. You are given three n-element point sets in R2, R = {r1, . . . , rn}, called red, G =
{g1, . . . , gn}, called green, and P = {p1, . . . , pn}, called purple. For each of the following
two problems, present a reduction to linear programming in a space of constant dimension.
Indicate which variables are used in the LP formulation, what the constraints are, and what
the objective function is. Indicate what to do if the LP returns an answer that is infeasible
or unbounded (if that is possible).

(a) A (linear) slab is a region of the plane bounded by two parallel lines, y = ax + b+ and
y = ax + b−. Given R, G, and P , compute the slab (if it exists) of minimum vertical
height such that all the points of R lie strictly above the slab, all the points of G lie
within the slab, and all the points of P lie strictly below the slab (see Fig. 6(a)). If no
such slab exists, you should detect and report this.

(b) A parabolic slab is the region of the plane bounded between two “parallel” parabolas,
y = ax2 + bx + c+ and y = ax2 + bx + c−. Given R, G, and P , compute the parabolic
slab of minimum vertical distance such that all the points of R lie strictly above the
slab, all the points of G lie within the slab, and all the points of P lie strictly below the
slab (see Fig. 6(b)). If no such parabolic slab exists, you should detect and report this.
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(a) (b)

y = ax + b+

y = ax + b−

y = ax2 + bx + c+

y = ax2 + bx + c−

Figure 6: Linear and parabolic slabs.

Problem 8. You are given two sets of points in the plane, the red set R containing nr points and
the blue set B containing nb points. The total number of points in both sets is n = nr + nb.
Give an O(n) time algorithm to determine whether the convex hull of the red set intersects
the convex hull of the blue set. If one hull is nested within the other, then we consider them
to intersect. (Hint: It may be easier to consider the question in its inverse form, do the convex
hulls not intersect.)

Problem 9. Given a set of n points P in the plane, we define a subdivision of the plane into
rectangular regions by the following rule. We assume that all the points are contained within
a bounding rectangle. Imagine that the points are sorted in increasing order of y-coordinate.
For each point in this order, shoot a bullet to the left, to the right and up until it hits
an existing segment, and then add these three bullet-path segments to the subdivision (see
Fig. 7(a)).

new point

segments trimmedsegments trimmed

(a) (b)

Figure 7: Building a subdivision.

(a) Show that the resulting subdivision has size O(n) (including vertices, edges, and faces).

(b) Describe an algorithm to add a new point to the subdivision and restore the proper
subdivision structure. Note that the new point may have an arbitrary y-coordinate, but
the subdivision must be updated as if the points had been inserted in increasing order
of y-coordinate (see Fig. 7(b)).

(c) Prove that if the points are added in random order, then the expected number of struc-
tural changes to the subdivision with each insertion is O(1).
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Problem 10. Given two points p1 = (x1, y1) and p2 = (x2, y2) in the plane, we say that p2
dominates p1 if x1 ≤ x2 and y1 ≤ y2. Given a set of points P = {p1, p2, . . . , pn}, a point pi
is said to be Pareto maximal if it is not dominated by any other point of P (shown as black
points in Fig. 8(b)).

(a) (b)

Figure 8: Paresto maxima.

Suppose further that the points of P have been generated by a random process, where the x-
coordinate and y-coordinate of each point are independently generated random real numbers
in the interval [0, 1].

(a) Assume that the points of P are sorted in increasing order of their x-coordinates. As
a function of n and i, what is the probability that pi is maximal? (Hint: Consider the
points pj , where j ≥ i.)

(b) Prove that the expected number of maximal points in P is O(log n).

Problem 11. Consider an n-sided simple polygon P in the plane. Let us suppose that the leftmost
edge of P is vertical (see Fig. 9(a)). Let e denote this edge. Explain how to construct a data
structure to answer the following queries in O(log n) time with O(n) space. Given a ray r
whose origin lies on e and which is directed into the interior of P , find the first edge of P
that this ray hits. For example, in the figure below the query for ray r should report edge f .
(Hint: Reduce this to a point location query in an appropriate planar subdivision.)

f

re

P

Figure 9: Ray-shooting queries.

Problem 12. You are given a set P of n points in R2. Present data structures for answering
the following two queries. In each case, the data structure should use O(n2) space, it should
answer queries in O(log n) time. (You do not need to explain how to build the data structure.)
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(a) The input to the query is a nonvertical line `. Such a line partitions P into two (possibly
empty) subsets: P+(`) consists of the points lie on or above ` and P−(`) consists of
the points of P that lie strictly below ` (see Fig. 10(a)). The answer is the maximum
vertical distance h between two lines parallel to h that lie between P+(`) and P−(`) (see
Fig. 10(b)).

For simplicity, you may assume that neither set is empty (implying that h is finite).

(a) (b)

`

P+(`)

P−(`)

`

h

`

(c)

`+

`−

Figure 10: Separation queries.

(b) Again, the input to the query is a nonvertical line `. The answer to the query consists
of the two lines `− and `+ of minimum and maximum slope, respectively, that separate
P+(`) from P−(`) (see Fig. 10(c)). You may assume that P+(`) from P−(`) are not
separable by a vertical line (implying that these two slopes are finite).

Problem 13. You are given a set P of n points in the plane and a path π that visits each point
exactly once. (This path may self-intersect. See Fig. 11.)

π

`1 `2

Figure 11: Path crossing queries.

Explain how to build a data structure from P and π of space O(n) so that given any query line
`, it is possible to determine in O(log n) time whether ` intersects the path. (For example, in
Fig. 11 the answer for `1 is “yes,” and the answer for `2 is “no.”) (Hint: Duality is involved,
but the solution requires a bit of “lateral thinking.”)

Problem 14. Consider the following two geometric graphs defined on a set P of points in the
plane.

(a) Box Graph: Given two points p, q ∈ P , define box(p, q) to be the square centered at
the midpoint of pq having two sides parallel to the segment pq (see Fig. 12(a)). The
edge (p, q) is in the box graph if and only if box(p, q) contains no other point of P (see
Fig. 12(b)). Show that the box graph is a subgraph of the Delaunay triangulation of P .
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(b) Diamond Graph: Given two points p, q ∈ P , define diamond(p, q) to be the square
having pq as a diagonal (see Fig. 12(c)). The edge (p, q) is in the diamond graph if
and only if diamond(p, q) contains no other point of P (see Fig. 12(d)). Show that the
diamond graph may not be a subgraph of the Delaunay triangulation of P . (Hint: Give
an example that shows that the diamond graph is not even planar.)

(a) (b)

q
p

box(p, q)

(c) (d)

q
p

diamond(p, q)

Figure 12: The box and diamond graphs.

Problem 15. You are given a set of n sites P in the plane. Each site of P is the center of a circular
disk of radius 1. The points within each disk are said to be safe. We say that P is safely
connected if, given any p, q ∈ P , it is possible to travel from p to q by a path that travels
only in the safe region. (For example, the disks of Fig. 13(a) are connected, but the disks of
Fig. 13(b) are not.)

Present an O(n log n) time algorithm to determine whether such a set of sites P is safely
connected. Justify the correctness of your algorithm and derive its running time.

(a) (b)

qp qp

Figure 13: Safe connectivity.

Problem 16. In class we argued that the number of parabolic arcs along the beach line in Fortune’s
algorithm is at most 2n − 1. The goal of this problem is to prove this result in a somewhat
more general setting.

Consider the beach line at some stage of the computation, and let {p1, . . . , pn} denote the
sites that have been processed up to this point in time. Label each arc of the beach line with
its the associated site. Reading the labels from left to right defines a string. (In Fig. 14 below
the string would be “p2p1p2p5p7p9p10”.)

(a) Prove that for any i, j, the following alternating subsequence cannot appear anywhere
within such a string:

. . . pi . . . pj . . . pi . . . pj . . .
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p1
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p5
p7 p9 p10

Figure 14: Beach-line complexity.

(b) Prove that any string of n distinct symbols that does not contain any repeated symbols
(. . . pipi . . .) and does not contain the alternating sequence1 of the type given in part (a)
cannot be of length greater than 2n− 1. (Hint: Use induction on n.)

Problem 17. Consider an n-element point set P = {p1, . . . , pn} in R2, and an arbitrary point
q ∈ R2 (which is not in P ). We say that q is k-deep within P if any line ` passing through q
has at least k points of P on or above the line and at least k points of P on or below it.

q

`

Figure 15: Point q is 4-deep within P .

For example, the point q in Fig. 15 is 4-deep, because any line passing through q has at least
four points of P on either side of it (including lying on the line itself).

(a) Assuming we use the usual dual transformation, which maps point p = (a, b) to line
p∗ : y = ax− b, explain what it means for a point q to be k-deep within P (in terms of
the dual line q∗ and the dual arrangement A(P ∗)).

(b) Present an efficient algorithm which, given P and q, determines the maximum value k
such that q is k-deep within P . (Hint: O(n log n) time is possible. I will accept a slower
algorithm for partial credit.)

(c) Present an efficient algorithm which, given P and an integer k, determines whether there
exists a point q that is k-deep within P . (Hint: First consider what this means in the
dual setting. O(n2 log n) time is possible. I will accept a slower algorithm for partial
credit.)

For parts (b) and (c) briefly justify your algorithm’s correctness and derive its running time.

1Sequences that contain no forbidden subsequence of alternating symbols are famous in combinatorics. They are
known as Davenport-Schinzel sequences. They have numerous applications in computational geometry, this being
one.
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