
CMSC 754 Dave Mount

CMSC 754: Lecture 3
Convex Hulls: Lower Bounds and Output Sensitivity

Reading: Chan’s output sensitive algorithm can be found in T. Chan, “Optimal output-sensitive
convex hull algorithms in two and three dimensions”, Discrete and Computational Geometry, 16,
1996, 361–368.

Lower Bound and Output Sensitivity: Last time we presented two planar convex hull algo-
rithms, Graham’s scan and the divide-and-conquer algorithm, both of which run in O(n log n)
time. A natural question to consider is whether we can do better.

Recall that the output of the convex hull problem a convex polygon, that is, a cyclic enumer-
ation of the vertices along its boundary. Thus, it would seem that in order to compute the
convex hull, we would “need” to sort the vertices of the hull. It is well known that it is not
generally possible to sort a set of n numbers faster than Ω(n log n) time, assuming a model
of computation based on binary comparisons. (There are faster algorithms for sorting small
integers, but these are not generally applicable for geometric inputs.)

Can we turn this intuition into a formal lower bound? We will show that in O(n) time it
is possible to reduce the sorting problem to the convex hull problem. This implies that any
O(f(n))-time algorithm for the convex hull problem implies an O(n + f(n))-time algorithm
for sorting. Clearly, f(n) cannot be smaller than Ω(n log n) for otherwise we would obtain an
immediate contradiction to the lower bound on sorting.

The reduction works by projecting the points onto a convex curve. In particular, let X =
{x1, . . . , xn} be the n values that we wish to sort. We will map this into a 2-dimensional point
set by projecting the points onto the boundary of a convex shape, so that the sorted order
is preserved. For example, suppose that we project each point vertically onto the parabola
y = x2, by mapping xi to the point pi = (xi, x

2
i) (see Fig. 1(a)). Let P denote the resulting

set of points. It is easy to see that all the points of P lie on its convex hull, and the sorted
order of points along the lower hull is the same as the sorted order X (see Fig. 1(b)). Once we
obtain the convex hull as a cycle sequence of vertices, in O(n) additional time we can extract
its lower hull from left to right, thus obtaining X in sorted order (see Fig. 1(c)).

p2

p4
p3 p5

p1

x2 x4 x3 x5 x1

y = x2

p2

p4
p3 p5

p1

Lift Compute hull

p2

p4
p3 p5

p1

Get sorted sequence

x2 x4 x3 x5 x1

(a) (b) (c)

Fig. 1: Reduction from sorting to convex hull.

Theorem: Assuming computations based on comparisons (e.g., orientation tests) any algo-
rithm for the convex hull problem requires Ω(n log n) time in the worst case.

Lecture 3 1 Fall 2021

CMSC 754 Dave Mount

Is this the end of the story? Well, maybe not . . .

� What if we don’t require that the points be enumerated in cyclic order? For example,
suppose we just wanted to count number of points on the convex hull. Can we do better?

� Suppose that we are not interested in worst-case behavior. For example, in many in-
stances of convex hull, relatively few points lie on the boundary of the hull.

We will present three other results later in this lecture:

� We will present a convex hull algorithm, called Jarvis’s March, that runs O(nh) time,
where h is the number of vertices on the hull. (This is beats Graham’s algorithm when-
ever h is asymptotically smaller than O(log n).)

� We will present Chan’s algorithm, which computes the convex hull in O(n log h) time.

� We will present a lower bound argument that shows that, assuming a comparison-based
algorithm, even answering the question “does the convex hull have h distinct vertices?”
requires Ω(n log h) time.

The last result implies that Chan’s algorithm is essentially the best possible as a function
of h and n. An algorithm whose running time depends on the output size is called output
sensitive. Both Jarvis’s March and Chan’s algorithm are output sensitive.

Jarvis’s March: Our next convex hull algorithm, called Jarvis’s march, computes the convex hull
in O(nh) time by a process called “gift-wrapping.” In the worst case, h = n, so this is inferior
to Graham’s algorithm for large h, it is superior if h is asymptotically smaller than log n, that
is, h = o(log n).

Jarvis’s algorithm begins by identifying any one point of P that is guaranteed to be on the
hull, say, the point with the smallest y-coordinate. (As usual, we assume general position,
so this point is unique.) Call this v1. It then repeatedly finds the next vertex on the hull in
counterclockwise order.

Given a triple of distinct points 〈p, q, r〉, define the turning angle of r with respect to p and q
to be the (CCW) angle between the directed line pq and the directed line qr (see Fig. 2(a)).

v0
v1

(d)(c)

v1

vi−2

vi−1

vi

v2

v3

(b)

(−∞, 0)
p

(a)

q

r

Turning angle

v2

v3

v4

v5

v6

Fig. 2: Jarvis’s march.

Jarvis’s march works by repeatedly computing the next hull vertex vi as the point of P that
minimizes the turning angle with respect to the prior two, vi−2 and vi−1 (see Fig. 2(c)). Since

Lecture 3 2 Fall 2021

CMSC 754 Dave Mount

we need two points, to get the ball rolling, it is convenient to define an imaginary “sentinel
point” v0 = (−∞, 0), which has the effect that the initial line v0v1 is directed horizontally to
the right (see Fig. 2(d)).

Jarvis’s March

(1) Given P , let v0 = (−∞, 0) and let v1 be the point of P with the smallest y-coordinate

(2) For i← 2, 3, . . .

(a) vi ← the point of P \ {vi−1, vi−2} that minimizes the turning angle with respect to vi−2 and vi−1

(b) If vi == v1, return 〈v1, . . . , vi−1〉

The algorithm’s correctness follows from the fact that (by induction) vi−2vi−1 is a CCW-
directed edge of the hull, and hence the next vertex of the hull is the one that minimizes the
turning angle.

By basic trigonometry, turning angles can be computed in constant time. But it is interesting
to note that it is possible to compare turning angles just using orientation tests. (Try this
yourself.) This implies that if the input coordinates are integers, the vertices of the hull can
be computed exactly (assuming double-precision integer computations).

To obtain the running time, observe that v1 can be computed in O(n) time, and each iteration
can be implemented in O(n) time. After h iterations, the algorithm terminates, so the total
running time is O(n + nh) = O(nh).

Chan’s Algorithm: Depending on the value of h, Graham’s scan may be faster or slower than
Jarvis’ march. This raises the intriguing question of whether there is an algorithm that always
does as well or better than these algorithms. Next, we present a planar convex hull algorithm
by Timothy Chan whose running time is O(n log h).

While this algorithm is too small an improvement over Graham’s algorithm to be of significant
practical value, it is quite interesting nonetheless from the perspective of the techniques that
it uses:

� It combines two slower algorithms, Graham’s and Jarvis’s, to form a faster algorithm.

� It employs a clever guessing strategy to determine the value of a key unknown parameter,
the number h of vertices on the hull.

To gain some intuition behind Chan’s algorithm, let us first observe that in order to replace
the O(log n) factor in Graham’s algorithm with O(log h), we cannot afford to sort any set
whose size is (significantly) larger than h. This would seem impossible at first glance, since
we don’t know the value of h until the algorithm terminates! We will get around this by
playing a “guessing game” for the value of h. We’ll start low, and work up to successively
guesses for what h is. Throughout, let h denote the true number of vertices on the hull. The
algorithm will maintain a variable h∗, which is our current “guess” on the value of h. As we
shall see, if we guess wrong, we will discover our error, and we will need to increase our guess.
For now, let us assume that a magical little bird has told us the value of h∗ that works.

We will need to make use of a utility function, whose implementation we will leave as an
exercise. Recall that a support line for a convex body is a line that contacts the boundary

Lecture 3 3 Fall 2021

CMSC 754 Dave Mount

of the body and the body lies entirely on one side of the line. Given a convex body Q and
any point p external to Q, there are exactly two support lines of Q that pass through p. The
next lemma shows that we can compute them logarithmic time.

Lemma: Given a convex polygon Q = 〈q1, . . . , qm〉, where the vertices are stored in an m-
element array sorted in CCW order around Q’s boundary, and given any point p that
is external to Q, in O(logm) time we can compute the two vertices q− and q+ of Q so
that pq− and pq+ are support lines of Q.

p

q−

q+

Q

q1

q2

q3

Fig. 3: Utility function - Computing tangent points.

We can now describe Chan’s algorithm, conditioned on the fact that we have a guess h∗ on
the size of the hull.

Step 1: (Mini-hulls) Partition P (arbitrarily) into k = dn/h∗e groups, each of size at most
h∗. Call these P1, . . . , Pk (see Fig. 4(b)). By Graham’s algorithm, compute the convex
hull of each subset. Let H1, . . . ,Hk denote the resulting mini-hulls (see Fig. 4(c)).

How long does this take? We can compute each mini-hull in time O(h∗ log h∗). Applying
this to each of the k groups, we have an overall time of O(k(h∗ log h∗)) = O(n log h∗).
Note that if we guess the value of h correctly (that is, h∗ = h) then this runs in time
O(n log h), as desired.

Original point set

(a) (b)

Partition (h∗ = 8)

(c)

Compute mini-hulls

P1

P2

P3

P4

H1

H2
H3

H4

Fig. 4: Step 1: Partitioning and mini-hulls (for k = 4).

Step 2: (Merging) The high-level idea is to run Jarvis’s march on the mini-hulls (see
Fig. 5(a)). We will treat each mini-hull as if it is a “fat point”. In particular, we
take the most recent vertex vi−1 and for each mini-hull Hj employ the utility function
of the above lemma to compute the vertices q−j and q+j for the support lines for this

Lecture 3 4 Fall 2021

CMSC 754 Dave Mount

mini-hull (see Fig. 5(b)). As in Jarvis’s algorithm, among all of these support points, we
take vi to be the one that minimizes the turn angle with respect to vi−2 and vi−1 (see
Fig. 5(c)). (By the nature of Jarvis’s algorithm, we only need to compute the support
line with the smaller turning angle, but computing both will not affect the asymptotic
running time. Also note that we do this for the mini-hull containing vi−1 itself, but this
is trivial.)

(a) (b)

Merge mini-hulls

H1

H2
H3

H4

vi−2

vi−1

Hj q−j

(c)

Minimum turning angle

H1

H2
H3

H4

vi

vi−1

q+j

Turning angles
for one mini-hull

Fig. 5: Step 2: Merging the mini-hulls.

How long does this take? For each mini-hull, we can compute the two support lines
in time O(log h∗) by the lemma. The number of support lines is twice the number of
mini-hulls, so for each step of Jarvis’s algorithm, we can compute all the relevant turning
angles in time O(k log h∗). Each iteration of Jarvis yields one more vertex of the final
convex hull (of which there are h), so the overall running time is O(h(k log h∗)). Observe
that if we managed to guess the right value of h (that is, if h∗ = h), then this takes time
O(h∗(k log h∗)) = O(n log h∗) = O(n log h), as desired.

In summary, we have argued above that, if we were lucky enough to guess the correct hull
size (h∗ = h), then the method outlined above will yield the convex hull in time O(n log h).

The Conditional Algorithm: We can now present a conditional algorithm for computing the
convex hull. The algorithm is given a point set P and an estimate h∗ of the number of
vertices on P ’s convex hull. Letting h denote the actual number of vertices on the hull. We
will see below that if the h∗ is significantly larger or smaller than h, the algorithm will not
be efficient. In the merge phase, if we ever see more than h∗ hull vertices, we know that our
estimate is too low, and we terminate the algorithm (returning “failure”) before the damage
is too great.

Guessing the Hull’s Size: The conditional algorithm assumes that we have a good estimate in
h∗ for h. What are the consequences of guessing wrong?

Too large? If we guess a value of h∗ > h, then the Graham scans, which together run in
O(n log h∗) time may be too slow. Notice, however, that we pay only a constant factor
even if h∗ is polynomially larger than h. For example, if h < h∗ ≤ h2, then the running
time of Graham’s scan is O(n log(h2)) = O(2n log h) = O(n log h), which is okay for us.

Lecture 3 5 Fall 2021

CMSC 754 Dave Mount

Chan’s Algorithm for the Conditional Hull Problem

ConditionalHull(P, h∗) :

(1) Let k ← dn/h∗e. Partition P (arbitrarily) into disjoint subsets P1, . . . , Pk, each of size at most h∗

(3) For j ← 1 to k, compute Hj = conv(Pj) using Graham’s scan, storing each in an ordered array

(4) Let v0 ← (−∞, 0), and let v1 be the bottommost point of P

(5) For i← 1, 2, . . . , h∗:

(a) For j ← 1 to k, using the utility lemma, compute the tangents points q−j and q+j for Hj with
respect to vi−1.

(b) Set vi to be the tangent point that minimizes the turning angle with respect to vi−2 and vi−1

(c) If vi = v1 then return the pair (success, V = 〈v1, . . . , vi−1〉)
(6) If we get here, we know that h∗ < h, and we return (failure, ∅)

Too small? If we guess a value of h∗ < h, then the merge phase will be too slow. It is easy
to verify that (even if we didn’t stop it because of the failure condition) it would run
in time O(n(h/h∗) log h∗). If our estimate h∗ is not within a constant factor of h, then
we will not achieve our desired running time. This is why we chose to use the “failure”
option. Since we never do more than h∗ iterations, the running time of each failure phase
is just O(n log h∗).

Here is what we’ll do. We’ll start with a low estimate for h∗ (e.g., h∗ = 3). If the algorithm
returns “failure”, we increase h∗ until we succeed. The question is how quickly we should
step up the value of h∗?

It is easy to show that increasing h∗ in an arithmetic progression (e.g., h∗ = 3, 4, 5, . . .) will be
way to slow. A smarter approach is to grow h∗ through doubling (e.g. h∗ = 4, 8, 16, . . . , 2i).
We will leave it as an exercise to show that this is also too slow. (It will lead to a running
time of O(n log2 h).)

Recall that we are allowed to overshoot the actual value of h by any polynomial. Let’s try
repeatedly squaring the previous guess. In other words, let’s try h∗ = 2, 4, 16, 256, . . . , 22

i
.

Clearly, as soon as we reach a value for which the restricted algorithm succeeds, we have
h < h∗ ≤ h2. Therefore, the running time for this last stage will be O(n log h), as desired.
But what about the total time for all the previous stages?

To analyze the total time, consider the ith guess, h∗i = 22
i
. The ith trial takes time

O(n log h∗i) = O
(
n log 22

i)
= O(n2i). We know that we will succeed as soon as h∗i ≥ h,

that is if i = dlg lg he. (Throughout the semester, we will use “lg” to denote logarithm base
2 and “log” when the base does not matter.1) Thus, the algorithm’s total running time (up
to constant factors) is

T (n, h) =

lg lg h∑
i=1

n2i = n

lg lg h∑
i=1

2i.

The summation is a geometric series. It is well known that a geometric series is asymptotically

1When logn appears as a factor within asymptotic big-O notation, the base of the logarithm does not matter
provided it is a constant. This is because loga n = logb n/ logb a. Thus, changing the base only alters the constant
factor.

Lecture 3 6 Fall 2021

CMSC 754 Dave Mount

dominated by its largest term. Thus, we obtain a total running time of

T (n, h) < n · 2dlg lg he < n · 21+lg lg h = n · 2 · 2lg lg h = 2n lg h = O(n log h),

which is just what we want. In other words, by the “miracle” of the geometric series, the
total time to try all the previous failed guesses is asymptotically the same as the time for the
final successful guess. The final algorithm is presented in the code block below.

Chan’s Complete Convex Hull Algorithm

Hull(P) :

(1) h∗ ← 2; status← failure

(2) while (status 6= failure):

(a) Let h∗ ← min((h∗)2, n)

(b) (status, V)← ConditionalHull(P, h∗)

(3) return V

Lower Bound (Optional): We show that Chan’s result is asymptotically optimal in the sense
that any algorithm for computing the convex hull of n points with h points on the hull requires
Ω(n log h) time. The proof is a generalization of the proof that sorting a set of n numbers
requires Ω(n log n) comparisons.

If you recall the proof that sorting takes at least Ω(n log n) comparisons, it is based on the
idea that any sorting algorithm can be described in terms of a decision tree. Each comparison
has at most three outcomes (<, =, or >). Each such comparison corresponds to an internal
node in the tree. The execution of an algorithm can be viewed as a traversal along a path
in the resulting ternary (3-way splitting) tree. The height of the tree is a lower bound on
the worst-case running time of the algorithm. There are at least n! different possible inputs,
each of which must be reordered differently, and so you have a ternary tree with at least n!
leaves. Any such tree must have Ω(log3(n!)) height. Using Stirling’s approximation for n!,
this solves to Ω(n log n) height. (For further details, see the algorithms book by Cormen,
Leiserson, Rivest, and Stein.)

We will give an Ω(n log h) lower bound for the convex hull problem. In fact, we will give an
Ω(n log h) lower bound on the following simpler decision problem, whose output is either yes
or no.

Convex Hull Size Verification Problem (CHSV): Given a point set P and integer h,
does the convex hull of P have h distinct vertices?

Clearly if this takes Ω(n log h) time, then computing the hull must take at least as long.
As with sorting, we will assume that the computation is described in the form of a decision
tree. The sorts of decisions that a typical convex hull algorithm will make will likely involve
orientation primitives. Let’s be even more general, by assuming that the algorithm is allowed
to compute any algebraic function of the input coordinates. (This will certainly be powerful
enough to include all the convex hull algorithms we have discussed.) The result is called an
algebraic decision tree.

Lecture 3 7 Fall 2021

CMSC 754 Dave Mount

The input to the CHSV problem is a sequence of 2n = N real numbers. We can think of these
numbers as forming a vector in real N -dimensional space, that is, (z1, z2, . . . , zN) = ~z ∈ RN ,
which we will call a configuration. Each node branches based on the sign of some function of
the input coordinates. For example, we could implement the conditional zi < zj by checking
whether the function (zj − zi) is positive. More relevant to convex hull computations, we can
express an orientation test as the sign of the determinant of a matrix whose entries are the
six coordinates of the three points involved. The determinant of a matrix can be expressed
as a polynomial function of the matrices entries. Such a function is called algebraic. We
assume that each node of the decision tree branch three ways, depending on the sign of a
given multivariate algebraic formula of degree at most d, where d is any fixed constant. For
example, we could express the orientation test involving points p1 = (z1, z2), p2 = (z3, z4),
and p3 = (z5, z6) as an algebraic function of degree two as follows:

det

 1 z1 z2
1 z3 z4
1 z5 z6

 = (z3z6 − z5z4)− (z1z6 − z5z2) + (z1z4 − z3z2).

For each input vector ~z to the CHSV problem, the answer is either “yes” or “no”. The set
of all “yes” points is just a subset of points Y ⊂ RN , that is a region in this space. Given an
arbitrary input ~z the purpose of the decision tree is to tell us whether this point is in Y or
not. This is done by walking down the tree, evaluating the functions on ~z and following the
appropriate branches until arriving at a leaf, which is either labeled “yes” (meaning ~z ∈ Y)
or “no”. An abstract example (not for the convex hull problem) of a region of configuration
space and a possible algebraic decision tree (of degree 1) is shown in the following figure. (We
have simplified it by making it a binary tree.) In this case the input is just a pair of real
numbers.

1

2

3

4

5

6

no

Y

Y

no

no

no

no
Y

Y

1
2 3

4

5
6

Y

Y

The set Hierarchical partition Decision tree

(a) (b) (c)

Fig. 6: The geometric interpretation of an algebraic decision tree.

We say that two points ~u,~v ∈ Y are in the same connected component of Y if there is a
path in RN from ~u to ~v such that all the points along the path are in the set Y . (There
are two connected components in the figure.) We will make use of the following fundamental
result on algebraic decision trees, due to Ben-Or. Intuitively, it states that if your set has M
connected components, then there must be at least M leaves in any decision tree for the set,
and the tree must have height at least the logarithm of the number of leaves.

Lecture 3 8 Fall 2021

CMSC 754 Dave Mount

Theorem: Let Y ∈ RN be any set and let T be any d-th order algebraic decision tree that
determines membership in W . If W has M disjoint connected components, then T must
have height at least Ω((logM)−N).

We will begin our proof with a simpler problem.

Multiset Size Verification Problem (MSV): Given a multiset of n real numbers and an
integer k, confirm that the multiset has exactly k distinct elements.

Lemma: The MSV problem requires Ω(n log k) steps in the worst case in the d-th order
algebraic decision tree

Proof: In terms of points in Rn, the set of points for which the answer is “yes” is

Y = {(z1, z2, . . . , zn) ∈ Rn : |{z1, z2, . . . , zn}| = k}.

It suffices to show that there are at least k!kn−k different connected components in this
set, because by Ben-Or’s result it would follow that the time to test membership in Y
would be

Ω(log(k!kn−k)− n) = Ω(k log k + (n− k) log k − n) = Ω(n log k).

Consider the all the tuples (z1, . . . , zn) with z1, . . . zk set to the distinct integers from 1
to k, and zk+1 . . . zn each set to an arbitrary integer in the same range. Clearly there are
k! ways to select the first k elements and kn−k ways to select the remaining elements.
Each such tuple has exactly k distinct items, but it is not hard to see that if we attempt
to continuously modify one of these tuples to equal another one, we must change the
number of distinct elements, implying that each of these tuples is in a different connected
component of Y .

To finish the lower bound proof, we argue that any instance of MSV can be reduced to the
convex hull size verification problem (CHSV). Thus any lower bound for MSV problem applies
to CHSV as well.

Theorem: The CHSV problem requires Ω(n log h) time to solve.

Proof: Let Z = (z1, . . . , zn) and k be an instance of the MSV problem. We create a point
set {p1, . . . , pn} in the plane where pi = (zi, z

2
i), and set h = k. (Observe that the points

lie on a parabola, so that all the points are on the convex hull.) Now, if the multiset
Z has exactly k distinct elements, then there are exactly h = k points in the point set
(since the others are all duplicates of these) and so there are exactly h points on the
hull. Conversely, if there are h points on the convex hull, then there were exactly h = k
distinct numbers in the multiset to begin with in Z.

Thus, we cannot solve CHSV any faster than Ω(n log h) time, for otherwise we could
solve MSV in the same time.

The proof is rather unsatisfying, because it relies on the fact that there are many duplicate
points. You might wonder, does the lower bound still hold if there are no duplicates? Kirk-
patric and Seidel actually prove a stronger (but harder) result that the Ω(n log h) lower bound
holds even you assume that the points are distinct.

Lecture 3 9 Fall 2021

