
CMSC 754 Dave Mount

CMSC 754: Lecture 8
Trapezoidal Maps

Reading: Chapter 6 of the 4M’s.

Trapezoidal Map: Many techniques in computational geometry are based on generating decom-
posing a complex arrangement of objects into a collection of simple objects. We have seen
triangulations as one example, where the interior of an n-vertex simple polygon is subdivided
into a collection of n − 2 triangles. Today, we will consider a considerably more general
technique for subdividing space in the midst of a collection of disjoint line segments.

Let S = {s1, . . . , sn} be a set of line segments in the plane such that the segments do not
intersect one another, except perhaps that two segments can intersect at their endpoints. (We
allow segments to share common endpoints so that our results can be generalized to planar
graphs and planar subdivisions.) Let us make the general-position assumptions that no two
endpoints have the same x-coordinate, and (hence) there are no vertical segments.

We wish to produce a subdivision of space that “respects” these line segments. To do so, we
start by enclosing all the segments within a large bounding rectangle (see Fig. 1(a)). This is
mostly a convenience, so we don’t have to worry about unbounded regions. Next, imagine
shooting a bullet path vertically upwards and downwards from the endpoints of each segment
of S until it first hits another segment of S or the top or bottom of the bounding rectangle.
The combination of the original segments and these vertical bullet paths defines a subdivision
of the bounding rectangle called the trapezoidal map of S (see Fig. 1(b)), denoted T (S).

∆

Line segments Trapezoidal map

(a) (b)

Fig. 1: A set of segments and the associated trapezoidal map.

The faces of the resulting subdivision are generally trapezoids with vertical sides, but they
may degenerate to triangles in some cases. The vertical sides are called walls. Also observe
that it is possible that the nonvertical side of a trapezoid may have multiple vertices along
the interior of its top or bottom side. This was not the case for the triangulations that we
discussed earlier, where adjacent triangles met only along complete edges. (In the terminology
of topology, a trapezoidal map is not a cell complex, while a triangulation is.) Trapezoidal
maps are useful data structures, because the provide a way to convert a possibly disconnected
collection of segments into a structure that covers the plane.

Lecture 8 1 Fall 2021

CMSC 754 Dave Mount

We begin by showing that the process of converting an arbitrary polygonal subdivision into
a trapezoidal decomposition increases its size by at most a constant factor. We derive the
exact expansion factor in the next claim.

Lemma: Given set S of n line segments in the plane, the resulting trapezoidal map T (S)
has at most 6n+ 4 vertices and 3n+ 1 trapezoids.

Proof: Each segment generates six vertices in the map, two for the segment’s endpoints, two
from the upward vertical rays, and two from the downward vertical rays (see Fig. 2(a)).
In addition, there are four vertices for the bounding rectangle, resulting in a total of
6n+ 4 vertices.

Let us charge each trapezoid to the vertex along its left edge. Each segment is charged
by three trapezoids, since the left endpoint of each segment is charged twice, one from
the trapezoid above-right and one from the trapezoid below-right, and the right endpoint
is charged once by the trapezoid to its right (see Fig. 2(b)). This yields a total of 3n
trapezoids. There is one more trapezoid, namely the leftmost one, for a total of 3n+ 1.

(a) (b)

Fig. 2: (a) The six vertices associated with each segment and (b) the three left-bounding trapezoids
associated with each segment.

An important fact to observe about each trapezoid is that its existence is determined by
exactly four entities from the original subdivision: a segment on top, a segment on the
bottom, a bounding vertex on the left, and a bounding vertex on the right. The bounding
vertices may be endpoints of the upper or lower segments, or they may below to completely
different segments. This simple observation will play an important role later in the analysis.

Construction: We could construct the trapezoidal map by a straightforward application of plane
sweep. (By now, this should be an easy exercise for you. You might think about how you
would do it.) Instead, we will build the trapezoidal map by a different approach, namely a
randomized incremental algorithm.1

The incremental algorithm starts with the initial bounding rectangle (that is, one trapezoid)
and then we add the segments of the polygonal subdivision one by one in random order. As
each segment is added, we update the trapezoidal map. Let Si denote the subset consisting
of the first i (randomly permuted) segments, and let Ti denote the resulting trapezoidal map.

1Historically, the randomized incremental algorithm that we will discuss arose as a method for solving a more
general problem, namely computing the intersection of a collection of line segments. Given n line segments that have
I intersections, this algorithm runs in O(I+n logn) time, which is superior to the plane sweep algorithm we discussed
earlier. The original algorithm is due to Ketan Mulmuley.

Lecture 8 2 Fall 2021

CMSC 754 Dave Mount

To perform this update, we need to know which trapezoid of the current map contains the left
endpoint of the newly added segment. We will address this question later when we discuss
point location. We then trace the line segment from left to right, by “walking” it through the
existing trapezoidal map (see Fig. 3). Along the way, we discover which existing trapezoids
it intersects. We go back to these trapezoids and “fix them up”. There are two things that
are involved in fixing process.

� The left and right endpoints of the new segment need to have bullets fired from them.

� One of the earlier created walls might hit the new line segment. When this happens the
wall is trimmed back. (We store which vertex shot the bullet path for this wall, so we
know which side of the wall to trim.)

The process is illustrated in Fig. 3, where we insert a new segment (red) into the trapezoidal
map from Fig. 1.

(a) (b) (c)

Fig. 3: Inserting a segment into the trapezoidal map: (a) Locate the left endpoint and trace the
segment through trapezoids, (b) shoot bullet paths from endpoints and trim walls that have been
crossed, (c) four original trapezoids have been replaced by seven new trapezoids (shaded).

Observe that the structure of the trapezoidal decomposition does not depend on the order in
which the segments are added. (This fact will be exploited later in the running time analysis,
and it is one of the reasons that trimming back the walls is so important.) The following is
also important to the analysis.

Lemma: Ignoring the time spent to locate the left endpoint of an segment, the time that
it takes to insert the ith segment and update the trapezoidal map is O(ki), where ki
denotes the number of newly created trapezoids.

Proof: Consider the insertion of the ith segment, and let wi denote the number of existing
walls that this segment intersects. We need to shoot four bullets (two from each end-
point) and then trim each of the wi walls, for a total of wi + 4 operations that need to
be performed. If the new segment did not cross any of the walls, then we would get
exactly four new trapezoids. For each of the wi walls we cross, we add one more to the
number of newly created trapezoids, for a total of wi + 4. Thus, letting ki = wi + 4 be
the number of trapezoids created, the number of update operations is exactly ki. Each
of these operations can be performed in O(1) time given any reasonable representation

Lecture 8 3 Fall 2021

CMSC 754 Dave Mount

of the trapezoidal map as a planar subdivision, for example, a doubly connected edge
list (DCEL).

Analysis: We will analyze the expected time to build the trapezoidal map, assuming that seg-
ments are inserted in random order. (Note that we make no assumptions about the spatial
distribution of the segments, other than the fact they do not intersect.) Clearly, the running
time depends on how many walls are trimmed with each intersection. In the worst case, each
newly added segment could result in Ω(n) walls being trimmed, and this would imply an
Ω(n2) running time. We will show, however, that the expected running time is much smaller,
in fact, we will show the rather remarkable fact that, each time we insert a new segment, the
expected number of wall trimmings is just O(1). (This is quite surprising at first. If many of
the segments are long, it might seem that every insertion would cut through O(n) trapezoids.
What saves us is that, although a long segment might cut through many trapezoids, it shields
later segments from cutting through many trapezoids.) As was the case in our earlier lecture
on linear programming, we will make use of a backwards analysis to establish this result.

There are two things that we need to do when each segment is inserted. First, we need to
determine which cell of the current trapezoidal map contains its left endpoint. We will not
discuss this issue today, but in our next lecture, we will show that the expected time needed
for this operation is O(n log n). Second, we need to trim the walls that are intersected by the
new segment. The remainder of this lecture will focus on this aspect of the running time.

From the previous claim, we know that it suffices to count the number of new trapezoids
created with each insertion. The main result that drives the analysis is presented in the next
lemma.

Lemma: Consider the randomized incremental construction of a trapezoidal map, and let
ki denote the number of new trapezoids created when the ith segment is added. Then
E[ki] = O(1), where the expectation is taken over all possible permutations of the
segments as the insertion orders.

Proof: The analysis will be based on a backwards analysis. Recall that such an analysis
involves analyzing the expected value assuming that the last insertion was random.

Let Ti denote the trapezoidal map resulting after the insertion of the ith segment. Be-
cause we are averaging over all permutations, among the i segments that are present in
Ti, each one has an equal probability 1/i of being the last one to have been added. For
each of the segments s we want to count the number of trapezoids that would have been
created, had s been the last segment to be added.

We say that a trapezoid ∆ of the existing map depends on an segment s, if s would
have caused ∆ to be created had s been the last segment to be inserted. (For example,
in Fig. 4(a), the shaded trapezoids depend on s, and none of the others do.) We want
to count the number of trapezoids that depend on each segment, and then compute
the average over all segments. If we let δ(∆, s) = 1 if segment ∆ depends on s, and 0

Lecture 8 4 Fall 2021

CMSC 754 Dave Mount

otherwise, then the expected value is

E[ki] =
∑
s∈Si

(prob. that s is last)(num. of trapezoids that depend on s)

=
∑
s∈Si

1

i

∑
∆∈Ti

δ(∆, s)

 =
1

i

∑
s∈Si

∑
∆∈Ti

δ(∆, s).

(a) (b)

s

Trapezoids that depend on s

∆

Segments that ∆ depends on

Fig. 4: Trapezoid-segment dependencies.

Some segments might have resulted in the creation of lots of trapezoids and others would
have resulted in very few. How can we analyze such an unruly quantity? The trick is,
rather than counting the number of trapezoids that depend on each segment, we swap
the order of the two summations and instead count the number segments upon which
each trapezoid depends. In other words we can express the above quantity as:

E[ki] =
1

i

∑
∆∈Ti

∑
s∈Si

δ(∆, s).

This quantity is much easier to analyze. In particular, each trapezoid is bounded by at
most four sides. (The reason it is “at most” is that degenerate trapezoids are possible
which may have fewer sides.) The top and bottom sides are each determined by a
segment of Si, and clearly if either of these was the last to be added, then this trapezoid
would have come into existence as a result. The left and right sides are each determined
by a endpoint of a segment in Si, and clearly if either of these was the last to be added,
then this trapezoid would have come into existence.2

In summary, each of the decomposition trapezoid is dependent on at most four segments,
which implies that

∑
s∈Si

δ(∆, s) ≤ 4. Since Ti consists of at most 3i+ 1 trapezoids we
have

E[ki] ≤
1

i

∑
∆∈Ti

4 =
4

i
|Ti| ≤

4

i
(3i+ 1) = O(1).

2There is a bit of a subtlety here. What if multiple segments share the endpoint? Note that the trapezoid is
only dependent on the first such segment to be added, since this is the segment that caused the vertex to come into
existence. Also note that the same segment that forms the top or bottom side might also provide the left or right
endpoint. These considerations only decrease the number of segments on which a trapezoid depends.

Lecture 8 5 Fall 2021

CMSC 754 Dave Mount

We know that the total number of trapezoids in the end is at most 3n+ 1 = O(n). Since the
expected number of new trapezoids created with each insertion is O(1), it follows that the
total number of trapezoids that are created (and perhaps destroyed) throughout the entire
process is O(n). This fact is important in bounding the total time needed for the randomized
incremental algorithm.

The only question that we have not considered in the construction is how to locate the
trapezoid that contains left endpoint of each newly added segment. We will consider this
question, and the more general question of how to do point location in our next lecture.

Lecture 8 6 Fall 2021

