
CMSC 754 Dave Mount

CMSC 754: Lecture 15
Orthogonal Range Trees

Reading: Chapter 5 in the 4M’s.

Orthogonal Range Trees: In the previous lecture we saw that kd-trees could be used to answer
orthogonal range queries in the plane in O(

√
n) time for counting and O(

√
n + k) time for

reporting. It is natural to wonder whether we can replace the O(
√
n) term with something

closer to the ideal query time of O(log n). Today we consider a data structure, which is
more highly tuned to this particular problem, called an orthogonal range tree. Recall that we
are given a set P of n points in R2, and our objective is to preprocess these points so that,
given any axis-parallel rectangle Q, we can count or report the points of P that lie within Q
efficiently.

An orthogonal range tree is a data structure which, in the plane uses O(n log n) space and
can answer range reporting queries in O(log n + k) time, where k is the number of points
reported. In general in dimension d ≥ 2, it uses O(n log(d−1) n) space, and can answer
orthogonal rectangular range queries in O(log(d−1) n + k) time. The preprocessing time is
the same as the space bound. We will present the data structure in two parts, the first is a
version that can answer queries in O(log2 n) time in the plane, and then we will show how to
improve this in order to strip off a factor of log n from the query time. The generalization to
higher dimensions will be straightforward.

Multi-layered Search Trees: The orthogonal range-tree data structure is a nice example of a
more general concept, called a multi-layered search tree. In this method, a complex search
is decomposed into a constant number of simpler range searches. Recall that a range space
is a pair (X,R) consisting of a set X and a collection R of subsets of X, called ranges.
Given a range space (X,R), suppose that we can decompose it into two (or generally a
small number of) range subspaces (X,R1) and (X,R2) such that any query Q ∈ R can be
expressed as Q1 ∩ Q2, for Qi ∈ Ri. (For example, an orthogonal range query in the plane,
[xlo, xhi] × [ylo, yhi], can be expressed as the intersection of a vertical strip and a horizontal
strip, in particular, the points whose x-coordinates are in the range Q1 = [xlo, xhi] × R and
the points whose y-coordinates are in the range Q2 = R × [ylo, yhi].) The idea is to then
“cascade” a number of search structures, one for each range subspace, together to answer a
range query for the original space.

Let’s see how to build such a structure for a given point set P . We first construct an appro-
priate range search structure, say, a partition tree, for P for the first range subspace (X,R1).
Let’s call this tree T (see Fig. 1). Recall that each node u ∈ T is implicitly associated with
a canonical subset of points of P , which we will denote by P (u). In the case that T is a
partition tree, this is just the set of points lying in the leaves of the subtree rooted at u. (For
example, in Fig. 1, P (u6) = {p5, . . . , p8}.) For each node u ∈ T , we construct an auxiliary
search tree for the points of P (u), but now over the second range subspace (X,R2). Let Tu

denote the resulting tree (see Fig. 1). The final data structure consists of the primary tree
T , the auxiliary search trees Tu for each u ∈ T , and a link from each node u ∈ T to the
corresponding auxiliary search tree Tu. The total space is the sum of space requirements for
the primary tree and all the auxiliary trees.

Lecture 15 1 Fall 2021

CMSC 754 Dave Mount

p1 p2 p3 p4 p5 p6 p7 p8
{p1, p2} {p3, p4}

{p5, p6} {p7, p8}

{p1, . . . , p4}

{p5, . . . , p8}

{p1, . . . , p8}

T

Auxiliary search trees

u4
u2

u1 u3 u5 u7

u6
Tu1 Tu3

Tu5 Tu7

Tu2

Tu6

Tu4

Fig. 1: Multi-layered search: A search the primary tree T identifies auxiliary trees Tui to search.

Now, given a query range Q = Q1 ∩Q2, where Qi ∈ Ri, we answer queries as follows. Recall
from our earlier lecture that, the partition tree T allows us to express the answer to the query
P ∩ Q1 as a disjoint union

⋃
u P (u) for an appropriate (and ideally small) subset of nodes

u ∈ T , whose associated canonical subsets form a partition of P ∩Q1. Call this subset U(Q1).
In order to complete the query, for each u ∈ U(Q1), we access the corresponding auxiliary
search tree Tu in order to determine the subset of points P (u) that lie within the query range
Q2. Therefore, once we have computed the answers to all the auxiliary ranges P (u) ∩Q2 for
all u ∈ U(Q1), all that remains is to combine the results (e.g., by summing the counts or
concatenating all the lists, depending on whether we are counting or reporting, respectively).
The query time is equal to the sum of the query times over all the trees that were accessed.

1-dimensional Range Tree: Before discussing 2-dimensional range trees, let us first recall the
1-dimensional range treee. Given a set P = {p1, . . . , pn} of scalar keys, we wish to preprocess
these points so that given a 1-dimensional interval Q = [Qlo, Qhi] along the x-axis, we can
count (or report) all the points that lie in this interval.

We begin by storing all the points of our data set in the external nodes (leaves) of any
balanced binary search tree sorted by x-coordinates (e.g., an AVL tree). We assume that if
an internal node contains a value x0 then the leaves in the left subtree are strictly less than
x0, and the leaves in the right subtree are greater than or equal to x0. Each node u in this
tree is implicitly associated with it canonical subset P (u) ⊆ P of elements of P that are in
the leaves descended from u. We assume that for each node u, we store the number of leaves
that are descended from u, denoted u.size. Thus u.size is equal to the number of elements in
P (u).

Given the query interval Q = [Qlo, Qhi], we identify all the maximal subtrees u such that the
canonical set associated with u lies entirely within Q (see Fig. 2(a)). We return the sum of
sizes of all these subtrees (see Fig. 2(b))

We claim that the nodes identifying the canonical subsets can be identified in O(log n) time
from this structure. Intuitively, we search the tree to find the leftmost leaf u whose key is

Lecture 15 2 Fall 2021

CMSC 754 Dave Mount

31

1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31

3 7

4

12 15 20 24 27

14

9

22 29

25

17

u v

Qhi = 23Qlo = 2
(b)(a)

Qlo Qhi Q
Q

O(log n)
2

4

6

12

6

4 4 44

2 2 2 2 2 2 2

Fig. 2: The canonical subtrees (shaded in red) for the query [2, 23].

greater than or equal to Qlo and the rightmost leaf v whose key is less than or equal to Qhi.
Clearly all the leaves between u and v (including u and v) constitute the points that lie within
the range. Since these two paths are of length at most O(log n), there are at most O(2 log n)
such trees possible, which is O(log n). To form the canonical subsets, we take the subsets of
all the maximal subtrees lying between u and v.

To perform this search, we maintain for each node u a cell C = [x0, x1], which in this 1-
dimensional case is just an interval running from the leftmost leaf key to the rightmost leaf
key in this subtree.

The recursive search procedure is shown below. Its arguments to the procedure are the current
node u, the range interval Q, and the current cell C. Let C0 = [−∞,+∞] be the initial cell
for the root node (or generally, any interval large enough to contain all the points). The initial
call is range1D(root, Q, C0). As with the kd-tree, there are three cases. If Q ∩ C = ∅,
there is no overlap and we return 0. If C ⊆ Q, then all the points of the canononical set are
included in the count. Otherwise, we recurse on the left and right subtrees.

1-Dimensional Range Counting Query
int range1Dx(Node u, Range Q, Interval C=[x0,x1]) {

if (u is a leaf) // hit the leaf level?

return (Q contains u.point ? 1 : 0) // count if point in range

else if (Q contains C) // Q contains entire cell?

return u.size // return entire subtree size

else if (Q is disjoint from C) // no overlap

return 0

else

return range1Dx(u.left, Q, [x0, u.x]) + // count left side

range1Dx(u.right, Q, [u.x, x1]) // and right side

}

Lemma: Given a (balanced) 1-dimensional range tree and any query range Q, in O(log n)
time we can compute a set of O(log n) canonical nodes u, such that the answer to the
query is the disjoint union of the associated canonical subsets P (u).

Lecture 15 3 Fall 2021

CMSC 754 Dave Mount

Orthogonal Range Trees: Now let us consider how to answer range queries in 2-dimensional
space. We first create 1-dimensional tree T as described in the previous section sorted by
the x-coordinate (see the left side of Fig. 3). For each internal node u of T , recall that P (u)
denotes the canonical set of points associated with the leaves descended from u. For each
node u of this tree we build a 1-dimensional range tree for the points of P (u), but sorted on
y-coordinates (see the right side of Fig. 3). This called the auxiliary tree associated with u.
Thus, there are n− 1 auxiliary trees, one for each internal node of T .

u

Qlo.x Qhi.x

Qhi.y

Qlo.y

P (u)

P (u)

u.aux

x-range tree

y-range tree

Fig. 3: 2-Dimensional Range tree.

Notice that there is a significant amount of duplication here. Each point in a leaf of the
x-range tree arises in the sets P (u) for all of its ancestors u in the x-range tree. We will
analyze the space usage below.

Query Processing: Now, when a 2-dimensional range is presented we do the following. First, we
invoke a variant of the 1-dimensional range search algorithm to identify the O(log n) canonical
nodes. (These are shown in blue in the left side of Fig. 3.) For each such node u, we know
that all the points of the set lie within the x portion of the range, but not necessarily in
the y part of the range. So, for each of the nodes u of the canonical subtrees, we search the
associated 1-dimensional auxiliary y-range and return a count of the resulting points. These
counts are summed up over all the auxiliary subtrees to obtain the final answer.

The algorithm given in the code block below is almost identical the previous one, except that
we make explicit reference to the x-coordinates in the search, and rather than adding u.size
to the count, we invoke a 1-dimensional version of the above procedure using the y-coordinate
instead. Let Q.x denote the x-portion of Q’s range, consisting of the interval [Qlo.x,Qhi.x].
The procedure range1Dy() is the same procedure described above, except that it searches on
y-coordinates rather than x.

Lecture 15 4 Fall 2021

CMSC 754 Dave Mount

2-Dimensional Range Counting Query
int range2D(Node u, Range2D Q, Range1D C=[x0,x1]) {

if (u is a leaf) // hit the leaf level?

return (Q contains u.point ? 1 : 0) // count if point in range

else if (Q’s x-range contains C) { // Q’s x-range contains C

[y0, y1] = [-infinity, +infinity] // initial y-cell

return range1Dy(u.aux, Q, [y0, y1]) // search auxiliary tree

}

else if (Q.x is disjoint from C) // no overlap

return 0

else

return range2D(u.left, Q, [x0, u.x]) + // count left side

range2D(u.right, Q, [u.x, x1]) // and right side

}

Space and Preprocessing Time: To derive a bound on the total space used, we sum the sizes
of all the trees. The primary search tree T for the x-coordinates requires only O(n) storage.
For each node u ∈ T , the size of the auxiliary search tree Tu is clearly proportional to the
number of points in this tree, which is the size of the associated canonical subset, |P (u)|.
Thus, up to constant factors, the total space is

n +
∑
u∈T
|P (u)|.

To bound the size of the sum, observe that each point of P appears in the set P (u) for each
ancestor of this leaf. Since the tree T is balanced, its depth is O(log n), and therefore, each
point of P appears in O(log n) of the canonical subsets. Since each of the n points of P
contributes O(log n) to the sum, it follows that the sum is O(n log n).

We claim that it is possible to construct a 2-dimensional range tree in O(n log n) time. Con-
structing the 1-dimensional range tree for the x-coordinates is easy to do in O(n log n) time.
However, we need to be careful in constructing the auxiliary trees, because if we were to sort
each list of y-coordinates separately, the running time would be O(n log2 n). Instead, the
trick is to construct the auxiliary trees in a bottom-up manner. The leaves, which contain a
single point are trivially sorted. Then we simply merge the two sorted lists for each child to
form the sorted list for the parent. Since sorted lists can be merged in linear time, the set of
all auxiliary trees can be constructed in time that is linear in their total since, or O(n log n).
Once the lists have been sorted, then building a tree from the sorted list can be done in linear
time.

Lemma: The total size of an 2-dimensional range tree storing n keys is O(n log n), and it
can be constructed in time O(n log n).

Query Time: It takes O(log n) time to identify the canonical nodes in the x-range tree. For each
of these O(log n) nodes we make a call to a 1-dimensional y-range tree. When we invoke this
on the subtree rooted at a node u, the running time is O(log |P (u)|). But, |P (u)| ≤ n, so this
takes O(log n) time for each auxiliary tree search. Since we are performing O(log n) searches,

Lecture 15 5 Fall 2021

CMSC 754 Dave Mount

each taking O(log n) time, the total search time is O(log2 n). As above, we can replace the
counting code with code in range1Dy() with code that traverses the tree and reports the
points. This results in a total time of O(k + log2 n), assuming k points are reported.

Higher Dimensions: Thus, each node of the 2-dimensional range tree has a pointer to a auxiliary
1-dimensional range tree. We can extend this to any number of dimensions. At the highest
level the d-dimensional range tree consists of a 1-dimensional tree based on the first coordinate.
Each of these trees has an auxiliary tree which is a (d− 1)-dimensional range tree, based on
the remaining coordinates. A straightforward generalization of the arguments presented here
show that the resulting data structure requires O(n logd n) space and can answer queries in
O(logd n) time.

Theorem: Given an n-element point set in d-dimensional space (for any constant d) orthog-
onal range counting queries can be answered in O(logd n) time, and orthogonal range
reporting queries can be answered in O(k+logd n) time, where k is the number of entries
reported.

Faster Queries by Cascading Search: Can we improve on the O(log2 n) query time? We would
like to reduce the query time to O(log n). (In general, this approach will shave a factor of
log n from the query time, which will lead to a query time of O(logd−1 n) in Rd).

What is the source of the extra log factor? As we descend the search the x-interval tree,
for each node we visit, we need to search the corresponding auxiliary search tree based on
the query’s y-coordinates [ylo, yhi]. It is this combination that leads to the squaring of the
logarithms. If we could search each auxiliary in O(1) time, then we could eliminate this
annoying log factor.

There is a clever trick that can be used to eliminate the additional log factor. Observe that
we are repeatedly searching different lists (in particular, these are subsets of the canonical
subsets P (u) for u ∈ U(Q1)) but always with the same search keys (in particular, ylo and
yhi). How can we exploit the fact that the search keys are static to improve the running times
of the individual searches?

The idea to rely on economies of scale. Suppose that we merge all the different lists that we
need to search into a single master list. Since

⋃
u P (u) = P and |P | = n, we can search this

master list for any key in O(log n) time. We would like to exploit the idea that, if we know
where ylo and yhi lie within the master list, then it should be easy to determine where they
are located in any canonical subset P (u) ⊆ P . Ideally, after making one search in the master
list, we would like to be able to answer all the remaining searches in O(1) time each. Turning
this intuition into an algorithm is not difficult, but it is not trivial either.

In our case, the master list on which we will do the initial search is the entire set of points,
sorted by y-coordinate. We will assume that each of the auxiliary search trees is a sorted
array. (In dimension d, this assumption implies that we can apply this only to the last level
of the multi-layered data structure.) Call these the auxiliary lists.

Here is how we do this. Let v be an arbitrary internal node in the range tree of x-coordinates,
and let v′ and v′′ be its left and right children. Let A be the sorted auxiliary list for v and
let A′ and A′′ be the sorted auxiliary lists for its respective children. Observe that A is the

Lecture 15 6 Fall 2021

CMSC 754 Dave Mount

disjoint union of A′ and A′′ (assuming no duplicate y-coordinates). For each element in A,
we store two pointers, one to the item of equal or larger value in A′ and the other to the item
of equal or larger value in A′′. (If there is no larger item, the pointer is null.) Observe that
once we know the position of an item in A, then we can determine its position in either A′ or
A′′ in O(1) additional time.

Here is a quick illustration of the general idea. Let v denote a node of the x-tree, and let v′

and v′′ denote its left and right children. Suppose that (in increasing order of y-coordinates)
the associated nodes within this range are: 〈p1, p2, p3, p4, p5, p6〉, and suppose that in v′ we
store the points 〈p2, p4, p5〉 and in v′′ we store 〈p1, p3, p6〉 (see Fig. 4(a)). For each point in
the auxiliary list for v, we store a pointer to the lists v′ and v′′, to the position this element
would be inserted in the other list (assuming sorted by y-values). That is, we store a pointer
to the largest element whose y-value is less than or equal to this point (see Fig. 4(b)).

p1p2

p3p4

p5
p6

(a) (b)

A

A′ A′′

v′ v′′
v

v

v′′v′ v′′

1 2 3 4 5 6

2 4 5 1 3 6

Fig. 4: Cascaded search in range trees.

At the root of the tree, we need to perform a binary search against all the y-values to
determine which points lie within this interval, for all subsequent levels, once we know where
the y-interval falls with respect to the order points here, we can drop down to the next level
in O(1) time. Thus, the running time is O(log n), rather than O(log2 n). By applying this
to the last level of the auxiliary search structures, we save one log factor, which gives us the
following result.

Theorem: Given a set of n points in Rd, orthogonal rectangular range queries can be an-
swered in O(log(d−1) n + k) time, from a data structure of space O(n log(d−1) n) which
can be constructed in O(n log(d−1) n) time.

We call this cascading search. This technique is special case of a more general data structures
technique called fractional cascading. The idea is that information about the search the results
“cascades” from one level of the data structure down to the next.

The result can be applied to range counting queries as well, but under the provision that we
can answer the queries using a sorted array representation for the last level of the tree. For
example, if the weights are drawn from a group, then the method is applicable, but if the the
weights are from a general semigroup, it is not possible. (For general semigroups, we need to
sum the results for individual subtrees, which implies that we need a tree structure, rather
than a simple array structure.)

Lecture 15 7 Fall 2021

