
CMSC 754 Dave Mount

CMSC 754: Lecture 20
Motion Planning

Reading: Chapt 13 in the 4M’s.

Motion planning: In this lecture we will discuss applications of computational geometry to the
problem of motion planning. This problem arises in robotics and in various areas where the
objective is to plan the collision-free motion of a moving agent in a complex environment.

Work Space and Configuration Space: The environment in which the robot operates is called
its work space, which consists of a domain in which the robot can move and a set of obstacles,
which the robot must avoid. Any overlap between the robot and an obstacle is called a
collision. We assume that the work space is static, that is, the obstacles do not move. We
also assume that a complete geometric description of the work space is available to us.

For our purposes, a robot will be modeled by two main elements. The first is a configuration,
which is a finite sequence of values that fully specifies the position of the robot. The sec-
ond element is the robot’s geometric shape description (relative to some default placement).
Combined, these two elements fully define the robot’s exact position and shape in space.

For example, suppose that the robot is a triangle that can translate and rotate in the plane
(see Fig. 1(a)). Its configuration may be described by the (x, y) coordinates of some reference
point for the robot, and an angle θ that describes its orientation. Its geometric information
would include its shape (say at some canonical position), given, say, as a simple polygon.
Given its geometric description and a configuration (x, y, θ), this uniquely determines the
exact position R(x, y, θ) of this robot in the plane. Thus, the position of the robot can be
identified with a point in the robot’s configuration space.

R(0, 0, 0)

R(2, 3, 45◦)

(a)

θ1

θ2

θ3

(b)

Fig. 1: Configurations of a translating and rotating robot.

A more complex example would be an articulated arm consisting of a set of links, connected
to one another by a set of rotating joints. The configuration of such a robot might consist of
a vector of joint angles (θ1, . . . , θk) (see Fig. 1(b)). The geometric description would probably
consist of a geometric representation of the links. Given a sequence of joint angles, the exact
shape of the robot could be derived by combining this configuration information with its
geometric description. For example, a typical 3-dimensional industrial robot has six joints,
and hence its configuration can be thought of as a point in a 6-dimensional space. Why

Lecture 20 1 Fall 2021



CMSC 754 Dave Mount

six? Generally, there are three degrees of freedom needed to specify a location the (x, y, z)
coordinates of its location in 3-space, and 3 more degrees of freedom needed to specify the
direction and orientation of the robot’s end manipulator. Given a point p in the robot’s
configuration space, let R(p) denote the placement of the robot at this configuration (see
Fig. 1).

The problem of computing a collision-free path for the robot can be reduced to computing a
path in the robot’s configuration space. To distinguish between these, we use the term work
space to denote the (standard Euclidean) space where the robot and obstacles reside (see
Fig. 2(a)), and the configuration space to denote to the space in which each point corresponds
to the robot’s configuration (see Fig. 2(b)). Planning the motion of the robot reduces to
computing a path in configuration space.

(a) (b)

Work space Configuration space

Fig. 2: (a) Translational motion in the work space amidst obstacles and (b) motion in the config-
uration space amidst collision obstacles.

A configuration that results in the robot to intersecting with one or more of the obstacles is
called a forbidden configuration. The set of all forbidden configurations is denoted Cforb(R, S).
All other placements are called free configurations, and the set of these configurations is
denoted Cfree(R, S), or free space.

Now consider the motion planning problem in robotics. Given a robotR, an work space S, and
initial configuration s and final configuration t (both points in the robot’s free configuration
space), determine (if possible) a way to move the robot from one configuration to the other
without intersecting any of the obstacles. This reduces to the problem of determining whether
there is a path from s to t that lies entirely within the robot’s free configuration space. Thus,
we map the task of computing a robot’s motion to the problem of finding a path for a single
point through a collection of obstacles.

Configuration Obstacles: While motion occurs in the robot’s work space, we perform motion
planning in the robot’s configuration space. For example, given a 2-dimensional robot that
can translate and rotate amidst 2-dimensional polygonal objects, we determine collisions in
the 2-dimensional space. But our motion plan is a path in 3-dimensional (x, y, θ) space, where
(x, y) indicate the robot’s translation and θ gives its rotation (about the reference point).

Lecture 20 2 Fall 2021



CMSC 754 Dave Mount

In order to determine which configurations are free and forbidden, we need to determine
the meaning of an obstacle in configuration space. Let’s suppose that the work space is d-
dimensional and the configuration space is k-dimensional. Given an obstacle P ⊂ Rd, its
configuration obstacle or (or C-obstacles for short) is defined to be

CR(P ) = {p ∈ Rk : R(p) ∩ P 6= ∅}.

(Note that the configuration p is in Rk, but the determination of collision between R(p) and
P is done in the work space Rd.)

Configuration spaces are typically higher dimensional than the work space, and configuration
obstacles can be quite complex. When rotation is involved, they are bounded by curved
surfaces. The simplest case to visualize is that of translating a convex polygonal robot in the
plane amidst a collection of polygonal obstacles, since both the work space and configuration
space are two dimensional. Consider a reference point placed in the center of the robot. The
process of mapping to configuration space involves replacing the robot with a single point (its
reference point) and “growing” the obstacles by a compensating amount (see Fig. 2(b)).

For the rest of the lecture we will consider a very simple case of a convex polygonal robot that
is translating among a convex set of obstacles. Even this very simple problem has a number
of interesting algorithmic issues.

Planning the Motion of a Point Robot: As mentioned above, we can reduce complex motion
planning problems to the problem of planning the motion of a point in free configuration
space. First we will consider the question of how to plan the motion of a point amidst a set
of obstacles, and then we will consider the question of how to construct configuration spaces.

s

t

s

t

(a) (b)

Fig. 3: Simple point motion planning through road maps.

Let us start with a very simple case in which the configuration space is 2-dimensional and the
objects are simple polygons, possibly with holes (see Fig. 3(a)). To determine whether there
is a path from one point s to another point t of free configuration space, we can subdivide
free space into simple convex regions. In the plane, we already know of one way to do this by
computing a trapezoidal map. We construct a trapezoidal map for all of the line segments
bounding the obstacles, then throw away any trapezoids that lie in the forbidden space (see
Fig. 3(b)). We also assume that we have a point location data structure for the trapezoidal
map.

Lecture 20 3 Fall 2021



CMSC 754 Dave Mount

Next, we create a planar graph, called a road map, based on this subdivision. To do this we
create a vertex in the center of each trapezoid and a vertex at the midpoint of each vertical
edge. We create edges joining each center vertex to the vertices on its (at most four) edges.

Now to answer the motion planning problem, we assume we are given the start point s and
destination point t. We locate the trapezoids containing these two points, and connect them
to the corresponding center vertices. We can join them by a straight line segment, because
the cells of the subdivision are convex. Then we determine whether there is a path in the
road map graph between these two vertices, say by breadth-first search. Note that this will
not necessarily produce the shortest path, but if there is a path from one position to the
other, it will find it.

Practical Considerations: While the trapezoidal map approach guarantees correctness, it is
rather limited. If the configuration space is 2-dimensional, but the configuration obstacles
have curved boundaries, we can easily extend the trapezoidal map approach, but we will
generally need to insert walls at points of vertical tangency.

Higher-dimensional spaces pose a much bigger problem (especially when combined with
curved boundaries). There do exist subdivision methods (one is called the Collins cylin-
drical algebraic decomposition, which can be viewed as a generalization of the trapezoidal
map to higher dimensions and curved surfaces), but such subdivisions often can have high
combinatorial complexity. Most practical road map-based approaches dispense with com-
puting the subdivision, and instead simply generate a large random sample of points in free
space. The problem is that if no path is found, who is to blame? Is there really no path, or
did we simply fail to sample enough points? The problem is most extreme when the robot
needs to navigate through a very narrow passage.

Another widely used heuristic is called the rapidly-exploring random tree (RRT). These trees
provide a practical approach to sampling the configuration space and building a tree-based
road map. While this method has good practical value, it can also fail when tight squeezes
are necessary.

C-Obstacles via Minkowski Sums: Let us consider how to build a configuration space for a set
of polygonal obstacles. We consider the simplest case of translating a convex polygonal robot
amidst a collection of convex obstacles. If the obstacles are not convex, then we may subdivide
them into convex pieces. One way to visualize CR(P ) is to imagine “scraping” R along the
boundary of P and seeing the region traced out by R’s reference point (see Fig. 4(a)).

Given R and P , how do we compute the configuration obstacle CR(P )? To do this, we first
introduce the notion of a Minkowski sum. Let us think of points in the plane as vectors.
Given any two sets P and Q in the plane, define their Minkowski sum to be the set of all
pairwise sums of points taken from each set (see Fig. 4(b)), that is,

P ⊕Q = {p+ q : p ∈ P, q ∈ Q}.

Also, define −S = {−p : p ∈ S}. (Intuitively, we are reflecting S through the origin.) We
introduce the shorthand notation R⊕ p to denote R⊕ {p}. Observe that the translate of R
by vector p is R(p) = R⊕ p. The relevance of Minkowski sums to C-obstacles is given in the
following claim.

Lecture 20 4 Fall 2021



CMSC 754 Dave Mount

P

Q

P ⊕Q

p

q

p + q

(b)(a)

P

R

C(P )

Fig. 4: Minkowski sum of two polygons.

Lemma: Given a translating robot R and an obstacle P , CR(P ) = P ⊕ (−R) (see Fig. 5).

Proof: Consider any translation vector t. Observe that t ∈ CR(P ) iff R(t) intersects P ,
which is true iff there exist r ∈ R and p ∈ P such that p = r+ t (see Fig. 5(a)), which is
true iff there exist −r ∈ −R and p ∈ P such that t = p+ (−r) (see Fig. 5(b)), which is
equivalent to saying that t ∈ P ⊕ (−R). Therefore, t ∈ CR(P ) iff t ∈ P ⊕ (−R), which
means that CR(P ) = P ⊕ (−R), as desired.

(a) (b)

P

R

C(P )

P

−R

P ⊕ (−R)

R

p

q

r

−r

p

q

Fig. 5: Configuration obstacles and Minkowski sums.

It is an easy matter to compute −R in linear time (by simply negating all of its vertices) the
problem of computing the C-obstacle CR(P ) reduces to the problem of computing a Minkowski
sum of two convex polygons. We’ll show next that this can be done in O(m+n) time, where
m is the number of vertices in R and n is the number of vertices in P .

Note that the above proof made no use of the convexity of R or P . It works for any shapes
and in any dimension. However, computation of the Minkowski sums is most efficient for
convex polygons.

Computing the Minkowski Sum of Convex Polygons: Let’s consider how to compute P⊕R
for two convex polygons P and R, having m and n vertices, respectively. The algorithm is
based on the following observation. Given a vector u, We say that a point p is extreme in
direction u if it maximizes the dot product p ·u (equivalently, a support line perpendicular to

Lecture 20 5 Fall 2021



CMSC 754 Dave Mount

u passes through p with the outward normal u). The following observation is easy to prove
by the linearity of the dot product.

Observation: Given two polygons P and R, the set of extreme points of P ⊕R in direction
u is the set of sums of points p and r that are extreme in direction u for P and R,
respectively.

This observation motivates an algorithm for computing P ⊕R. We perform an angular sweep
by sweeping a unit vector u counterclockwise around a circle. As u rotates, it is an easy matter
to maintain the vertex or edge of P and R that is extreme in this direction. Whenever u is
perpendicular to an edge of either P or R, we add this edge to the vertex of the other polygon.
The algorithm is given in the text, and is illustrated in the figure below. The technique of
applying one or more angular sweeps to a convex polygon is called the method of rotating
calipers.

P

R
u

u

e

r

e⊕ r

P ⊕R

u

u

Fig. 6: Computing Minkowski sums.

Assuming P and R are convex, observe that each edge of P and each edge of R contributes
exactly one edge to P ⊕R. (If two edges are parallel and on the same side of the polygons,
then these edges will be combined into one edge, which is as long as their sum.) Thus we
have the following.

Claim: Given two convex polygons, P and R, with n and m edges respectively, their Min-
kowski sum P ⊕ R can be computed in O(n + m) time, and consist of at most n + m
edges.

Complexity of Minkowski Sums: We have shown that free space for a translating robot is the
complement of a union of C-obstacles CR(P )i, each of which is a Minkowski sum of the form
Pi ⊕R, where Pi ranges over all the obstacles in the environment. If Pi and R are polygons,
then the resulting region will be a union of polygons. How complex might this union be, that
is, how many edges and vertices might it have?

To begin with, let’s see just how bad things might be. Suppose you are given a robot R
with m sides and a set of work-space obstacle P with n sides. How many sides might the
Minkowski sum P⊕R have in the worst case? O(n+m)? O(nm), even more? The complexity
generally depends on what special properties if any P and R have.

Lecture 20 6 Fall 2021



CMSC 754 Dave Mount

Nonconvex Robot and Nonconvex Obstacles: Suppose that bothR and P are (possibly non-
convex) simple polygons. Let m be the number of sides of R and n be the number of sides of
P . How many sides might there be in the Minkowski sum P ⊕R in the worst case? We can
derive a quick upper bound as follows. First observe that if we triangulate P , we can break
it into the union of at most n− 2 triangles. That is:

P =

n−2⋃
i=1

Ti and R =

m−2⋃
j=1

Sj .

It follows that

P ⊕R =
n−2⋃
i=1

m−2⋃
j=1

(Ti ⊕ Sj).

Thus, the Minkowski sum is the union of O(nm) polygons, each of constant complexity. Thus,
there are O(nm) sides in all of these polygons. The arrangement of all of these line segments
can have at most O(n2m2) intersection points (if each side intersects with each other), and
hence this is an upper bound on the number of vertices in the final result.

Could the complexity really be this high? Yes it could. Consider the two polygons in Fig. 7(a).
Suppose that P and R have m and n “teeth”, respectively. For each of independent choice
of two teeth of P (one from the top and one from the side), and two gaps from R (one from
the top and one from the side), there is a valid placement where these teeth fit within these
gaps (see the arrows in Fig. 7(a)). However, as can be seen from the figure, it is impossible to
move from one of these to another by translation without causing a collision. It follows that
there are Ω(n2m2) connected components of the free configuration space, or equivalently in
P ⊕−R (see Fig. 7(b)).

R

P
Work space Configuration space

(a) (b)

Fig. 7: Minkowski sum (simple-simple) of O(n2m2) complexity.

You might protest that this example is not fair. While it is true that there are many compo-
nents in the Minkowski sum, motion planning takes place within a single connected component
of free space, and therefore the quantity that is really of interest is the (worst-case) combi-
natorial complexity of any single connected component of free space. (In the example above,

Lecture 20 7 Fall 2021



CMSC 754 Dave Mount

all the components were of constant complexity.) This quantity is complicated to bound for
general shapes, but later we will show that it can be bounded for convex shapes.

As a final observation, notice that the upper bound holds even if P (and R for that matter)
is not a single simple polygon, but any union of n triangles.

Convex Robot and Nonconvex Obstacles: We have seen that the worst-case complexity of
the Minkowski sum might range from O(n+m) to as high as O(n2m2), which is quite a gap.
Let us consider an intermediate but realistic situation. Suppose that we assume that P is an
arbitrary n-sided simple polygon, and R is a convex m-sided polygon. Typically m is much
smaller than n. What is the combinatorial complexity of P ⊕R in the worst case? As before
we can observe that P can be decomposed into the union of n− 2 triangles Ti, implying that

P ⊕R =
n−2⋃
i=1

(Ti ⊕R).

Each Minkowski sum in the union is of complexity m+ 3. So the question is how many sides
might there be in the union of O(n) convex polygons each with O(m) sides? We could derive
a bound on this quantity, but it will give a rather poor bound on the worst-case complexity.
To see why, consider the limiting case of m = 3. We have the union of n convex objects,
each of complexity O(1). This could have complexity as high as Ω(n2), as seen by generating
a criss-crossing pattern of very skinny triangles. But, if you try to construct such a counter
example, you won’t be able to do it.

To see why such a counterexample is impossible, suppose that you start with nonintersecting
triangles, and then take the Minkowski sum with some convex polygon. The claim is that it is
impossible to generate this sort of criss-cross arrangement. So how complex an arrangement
can you construct? We will show the following later in the lecture.

Theorem: Let R be a convex m-gon and P and simple n-gon, then the Minkowski sum
P ⊕R has total complexity O(nm).

Is O(nm) an attainable bound? The idea is to go back to our analogy of “scraping” R around
the boundary of P . Can we arrange P such that most of the edges of R scrape over most of
the n vertices of P? Suppose that R is a regular convex polygon with m sides, and that P
has a comb-like structure where the teeth of the comb are separated by a distance at least as
large as the diameter of R (see Fig. 8(a)). In this case R will have many sides scrape across
each of the pointy ends of the teeth, implying that the final Minkowski sum will have total
complexity Ω(nm) (see Fig. 8(b)).

The Union of Pseudodisks: Consider a translating robot given as an m-sided convex polygon
and a collection of polygonal obstacles having a total of n vertices. We may assume that the
polygonal obstacles have been triangulated into at most n triangles, and so, without any loss
of generality, let us consider an instance of an m-sided robot translating among a set of n
triangles. As argued earlier, each C-obstacle has O(3+m) = O(m) sides, for a total of O(nm)
line segments. A naive analysis suggests that this many line segments might generate as many
as O(n2m2) intersections, and so the complexity of the free space can be no larger. However,

Lecture 20 8 Fall 2021



CMSC 754 Dave Mount

(a) (b)

R P P ⊕R

Fig. 8: Minkowski sum (simple-convex) of O(nm) complexity.

oi oj oj \ oi

oi \ oj

Pseudodisks
oi oj

oj \ oi

oi \ oj

Not pseudodisks

Fig. 9: Pseudodisks.

we assert that the complexity of the space will be much smaller, in fact its complexity will
be O(nm).

To show that O(nm) is an upper bound, we need some way of extracting the special geometric
structure of the union of Minkowski sums. Recall that we are computing the union of Ti⊕R,
where the Ti’s have disjoint interiors. A set of convex objects {o1, . . . , on} is called a collection
of pseudodisks if for any two distinct objects oi and oj both of the set-theoretic differences
oi\oj and oj\oi are connected (see Fig. 9). If this is violated for any two objects, we say that
these two objects have a crossing intersection. Note that the pseudodisk property is not a
property of a single object, but a property that holds for a set of objects.

Lemma 1: Given a set convex objects T1, . . . , Tn with disjoint interiors, and convex R, then

{Ti ⊕R | 1 ≤ i ≤ n}

is a collection of pseudodisks (see Fig. 10).

Proof: Consider two polygons T1 and T2 with disjoint interiors. We want to show that T1⊕R
and T2 ⊕ R do not have a crossing intersection. Given any directional unit vector u,
the most extreme point of R in direction u is the point r ∈ R that maximizes the dot
product (u·r). (Recall that we treat the “points” of the polygons as if they were vectors.)
The point of T1 ⊕R that is most extreme in direction u is the sum of the points t and
r that are most extreme for T1 and R, respectively.

Given two convex polygons T1 and T2 with disjoint interiors, they define two outer tan-
gents, as shown in the figure below. Let u1 and u2 be the outward pointing perpendicular
vectors for these tangents. Because these polygons do not intersect, it follows easily that
as the directional vector rotates from u1 to u2, T1 will be the more extreme polygon,
and from u2 to u1 T2 will be the more extreme (see Fig. 11).

Lecture 20 9 Fall 2021



CMSC 754 Dave Mount

(b)(a)

R

Ti Ti ⊕R

Fig. 10: Lemma 1.

u1

u2

T2 extreme

T1 extreme u1

u2

(a) (b)

T1
T2

Fig. 11: Alternation of extremes.

Now, if to the contrary T1 ⊕ R and T2 ⊕ R had a crossing intersection, then observe
that we can find points p1 p2, p3, and p4, in cyclic order around the boundary of the
convex hull of (T1 ⊕R) ∪ (T2 ⊕R) such that p1, p3 ∈ T1 ⊕R and p2, p4 ∈ T2 ⊕R. First
consider p1. Because it is on the convex hull, consider the direction u1 perpendicular
to the supporting line here. Let r, t1, and t2 be the extreme points of R, T1 and T2 in
direction u1, respectively. From our basic fact about Minkowski sums we have

p1 = r + t1 p2 = r + t2.

Since p1 is on the convex hull, it follows that t1 is more extreme than t2 in direction u1,
that is, T1 is more extreme than T2 in direction u1. By applying this same argument, we
find that T1 is more extreme than T2 in directions u1 and u3, but that T2 is more extreme
than T1 in directions u2 and u4. But this is impossible, since from the observation
above, there can be at most one alternation in extreme points for nonintersecting convex
polygons (see Fig. 12).

Lemma 2: Given a collection of polygonal pseudodisks, with a total of n vertices, the com-
plexity of their union is O(n).

Proof: This is a rather cute combinatorial lemma. We are given some collection of polygonal
pseudodisks, and told that altogether they have n vertices. We claim that their entire
union has complexity O(n). (Recall that in general the union of n convex polygons
can have complexity O(n2), by criss-crossing.) The proof is based on a clever charging

Lecture 20 10 Fall 2021



CMSC 754 Dave Mount

(a) (b)

T2 ⊕R
T1 ⊕R

u2

u1
u4

u3

u2

u1u4

u3

T1 extreme

T2 extremeT1 extreme

T2 extreme

Fig. 12: Proof of Lemma 1.

scheme. Each vertex in the union will be charged to a vertex among the original pseu-
dodisks, such that no vertex is charged more than twice. This will imply that the total
complexity is at most 2n.

There are two types of vertices that may appear on the boundary. The first are vertices
from the original polygons that appear on the union. There can be at most n such
vertices, and each is charged to itself. The more troublesome vertices are those that
arise when two edges of two pseudodisks intersect each other. Suppose that two edges
e1 and e2 of pseudodisks P1 and P2 intersect along the union. Follow edge e1 into
the interior of the pseudodisk e2. Two things might happen. First, we might hit the
endpoint v of this e1 before leaving the interior P2. In this case, charge the intersection
to v (see Fig. 13(a)). Note that v can be assessed at most two such charges, one from
either incident edge. If e1 passes all the way through P2 before coming to the endpoint,
then try to do the same with edge e2. Again, if it hits its endpoint before coming out of
P1, then charge to this endpoint (see Fig. 13(b)).

e2 e1

v

e2 e1

v
u

e2 e1

v
u

Charge v Charge u Cannot occur

(a) (b) (c)

Fig. 13: Proof of Lemma 2.

But what do we do if both e1 shoots straight through P2 and e2 shoots straight through
P1? Now we have no vertex to charge. This is okay, because the pseudodisk property
implies that this cannot happen. If both edges shoot completely through, then the two
polygons must have a crossing intersection (see Fig. 13(c)).

Recall that in our application of this lemma, we have n C-obstacles, each of which has at

Lecture 20 11 Fall 2021



CMSC 754 Dave Mount

most m + 3 vertices, for a total input complexity of O(nm). Since they are all pseudodisks,
it follows from Lemma 2 that the total complexity of the free space is O(nm).

Lecture 20 12 Fall 2021


