Convex Hull: (Intuitive definition)

Given a point set P in \mathbb{R}^2, imagine snipping a rubber band around the points.

P \rightarrow \text{conv}(P)$

Uses:
- Shape approximation (intersection test)
- First step in other algorithms
 - Diameter
 - Width

$\text{diam}(P)$
$\text{wid}(P)$
Basic Definitions:

\mathbb{R}^d - Real d-dim space $p=(p_1,\ldots,p_d)$, $p_i \in \mathbb{R}$
- Refer to as points (p,q) - location
- vectors (u,v,w) - displacement

\mathbb{R} - scalars $\alpha, \beta, \gamma, \ldots$

usual ops from linear algebra:
$u+v, u-v$ - vector addition
αu - scalar multiplication
$u \cdot v$ - dot product $= \sum_{i=1}^{d} u_i v_i$

Affine + Convex Combinations:

Affine combination: $\sum_{i=1}^{k} \alpha_i p_i$: $\sum_{i=1}^{k} \alpha_i = 1$

Convex combination: \ldots and $0 \leq \alpha_i \leq 1$
Lines, Hyperplanes, Halfspaces:

Given non-zero vector u + scalar α,

$$h(u, \alpha) = \{ p \in \mathbb{R}^d \mid p \cdot u = \alpha \}$$ is hyperplane.

If $\|u\| = 1$

$$h^+(u, \alpha) = \{ p \in \mathbb{R}^d \mid p \cdot u \geq \alpha \}$$

Euclidean Ball:

$$\text{dist}(p, q) = \| p - q \| = \left(\sum_{i=1}^{d} (p_i - q_i)^2 \right)^{\frac{1}{2}}$$

$$B(q, r) = \{ p \in \mathbb{R}^d \mid \| p - q \| \leq r \}$$

(Euclidean) ball of radius r centered at q.
Convexity:
A set \(K \subseteq \mathbb{R}^d \) is convex if \(\forall p, q \in K \) the line segment \(\overline{pq} \) (equiv. any convex combination of \(p + q \)) lies within \(K \).

Support Hyperplane:
Given convex \(K \) and any point \(p \in \partial K \), \(\exists \) hyperplane passing through \(p \) with \(K \) lying all on one side.

Convex Hull:
Given a set \(P \) of points in \(\mathbb{R}^d \), the convex hull, \(\text{conv}(P) \), is the smallest convex set containing \(P \).

- The set of all convex cumbw in \(P \)
- The intersection of all halfspaces containing \(P \)
General Position:

Geometric algorithms are complicated by rare (?) degenerate cases:
- Points having same coordinate
- ≥ 3 collinear points
- ≥ 4 cocircular points

To simplify algorithm presentation we often assume these do not arise in the input. Called general-position assumption

(Planar) Convex Hull Problem: Given a set of n pts $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^2$ ($p_i = (x_i, y_i)$) compute $\text{conv}(P)$.

Output: Cyclic ordering of vertices on the hull
weak hull: possible output: (indices) $\langle 4, 3, 7, 9, 8, 1 \rangle$

Note: p_5 not output
(can assume this away by "general position")

Alternative output: (left to right)
Upper-hull + Lower-hull
$\langle 7, 3, 4, 1 \rangle + \langle 7, 9, 8, 1 \rangle$
Graham’s Scan: $O(n \log n)$ solution
- Compute upper + lower hulls separately
 - Upper-hull:
 - Sort pts by x-coords
 - Add each to upper hull
 - Remove pts no longer on hull
 - Lower-hull: (symmetrical)

Observations:
- The rightmost pt always on hull
- Reading right to left, consecutive triples on the hull form left-hand turns

Incremental Approach:
- Store vertices (indices) of upper hull on stack
- For each new point p_i (left to right)
 - While $\langle p_i, S[top], S[top-1] \rangle$ do not form LHT - pop S
 - Push p_i
Example:

How to test for LHT?

Orientation test

Given a sequence \(\langle p, q, r \rangle \) of 3 pts in \(\mathbb{R}^2 \)

\[
\text{orient}(p, q, r) = \text{sign} \left(\det \begin{pmatrix}
1 & p_x & p_y \\
1 & q_x & q_y \\
1 & r_x & r_y
\end{pmatrix} \right)
\]

is:
- +1 if they are oriented CCW (LHT)
- -1 if they are oriented CW (RHT)
- 0 if they are collinear (or duplicates)
Graham's Scan: (Upper Hull only)
- Sort pts by increasing x-coords $\langle p_1, \ldots, p_n \rangle$
- Push p_1, p_2 onto S
- for $i \leftarrow 3$ to n
 - while ($|S| \geq 2$ and $\text{orient}(p_i, S[t], S[t-1]) \leq 0$) pop S
 - push p_i

Correctness: (Sketch)

Lemma: After processing p_i, S contains upper hull of $\langle p_1, \ldots, p_i \rangle$

Proof: By induction on i.
- p_i must be last vertex of hull
- all the popped pts are not on upper hull
- all remaining pts are on upper hull

(omit the details)
Running time:
- \(O(n \log n) \) to sort
- for \(3 \leq i \leq n \), let \(d_i = \text{num. of pops} \) when inserting \(p_i \)

- Time for scan is:

\[
\sum_{i=3}^{n} (d_i + 1) \leq n + \sum_{i=3}^{n} d_i
\]
for pops / for push of \(p_i \)

- Note that \(\sum d_i \leq n \rightarrow \text{Why?} \)

- Total time: \(O(n \log n + 2n) = O(n \log n) \)

Also see lecture notes for a hull algorithm based on divide + conquer