Polygon Triangulation: Given a simple polygon P (that is, a simple, closed polygonal chain)...

- simple polygon
- not simple

Subdivide the interior of P into triangles (vertices drawn from P's vertices)

Notes:
- P given as a cyclic seq. of pts
- Vertices $p_i + p_j$ are visible if open segment $\overline{p_ip_j} \subset \text{int}(P)$
- If $p_i + p_j$ visible, segment $\overline{p_ip_j}$ called a diagonal
Lemma: Given any n-vertex simple polygon ($n \geq 3$)
- A triangulation exists
- Any triangulation has $n-3$ diagonals
- Any triangulation has $n-2$ triangles

Dual Graph: A triangulation defines a graph:
- Vertices \leftarrow triangles
- Edges \leftarrow adjacent (share common edge)

The dual graph of a polygon triangulation is connected + acyclic \Rightarrow tree

History of Polygon Triangulation:
- $O(n^2)$ - Easy (find a diagonal + recurse)
- $O(n \log n)$ - We'll present this
- $O(n)$ - Chazelle 1991 (very complicated!)
Two steps:
1. Decompose the polygon into (simpler) polygons - monotone polygons - $O(n \log n)$
2. Triangulate each monotone polygon - $O(n)$

Output: Graph structure, called a doubly-connected edge list (DCEL)

Def: A polygon is x-monotone if any vertical intersects the polygon in a single segment (if at all)

![Monotone Decomposition - Add (non-intersecting) diagonals so that connected components are all x-monotone](image)
Triangulating a Monotone Polygon:

General position: No duplicate x-coords
(no vertical edges)

Reflex Vertex: Internal angle \(\geq \pi \)

Reflex Chain: Sequence of reflex vertices

General approach: Sweep from left to right
+ triangulate as much as we can behind us.

What's the loop invariant?
Lemma: For \(i \geq 2 \), let \(v_i \) be the next vertex to process. The untriangulated region to left of \(v_i \) consists of two \(x \)-monotone chains starting from a common vertex \(u \). One chain is a single edge, and the other is a reflex chain (of one or more edges).

For concreteness, let's assume reflex chain is on lower side.

Case 1: \((v_i \text{ lies on upper chain})\)
- add diagonals between \(v_i \) and all vertices of the chain

[By monotonicity, all are visible to \(v_i \)]

Now \(u = v_{i-1} \). Reflex chain has just one edge.
Case 2: \(v_i\) lies on lower chain

2a: \(v_{i-1}\) is non-reflex
- Connect \(v_i\) to all visible vertices on chain until hitting point of tangency. (Similar to Graham’s scan)
 [May go all the way back to \(u\)]

2b: \(v_{i-1}\) is reflex
- Add \(v_i\) to the chain

Correctness: Invariant holds after each iteration

Running time: \(O(n)\) [As in Graham, once a vertex is removed from the chain, it never reappears]
Monotone Subdivision:
Recall: Add diagonals to create x-monotone
Where? Scan reflex vertex: Reflex vertex
where both edges on same side of vertical line.

Add a diagonal to right side of each merge
left split

Plane-sweep Approach:
Need auxiliary info to help with diagonals
For each edge \(e_a \) of sweep line with \(\text{int}(L) \) below:

\[\text{helper}(e_a) = \text{rightmost vertically visible} \]
vertex on or below \(e_a \)
to left of sweep line
Why is the helper helpful?

- When we see a split vertex, we add diagonal to helper of edge above

- When we see a merge vertex, it is the helper of edge above + we connect it to next vertex where helper (ea) changes

Events: Polygon vertices (sorted by x)

Sweep-line status: Edges intersecting the sweep line (ordered dictionary)

Event processing: There are many cases!

Utility:

\[\text{fix-up}(v, e): \]

\[\text{if (helper(e) is a merge vertex) add diagonal v to helper(e)} \]
Split Vertex (v):
- e ← edge above v in sweep line
- add diagonal v to helper(e)
- insert edges incident to v into sweep line
- letting e' be lower, set helper(e') ← v

Merge Vertex (v):
- Consider two edges incident to v + let e' be lower one
- Delete both from sweep line
- Let e be edge above v
- fix-up(v, e) + fix-up(v, e')

Start vertex (v):
- Insert v's incident edges into sweep line
- Letting e be upper edge, helper(e) ← v

End vertex (v):
- Consider the two incident edges + let e be upper edge
- Delete both from sweep line
- fix-up(v, e)
Upper-chain vertex \((v) \):
- Let \(e \) be edge to left, \(e' \) to right
- \text{fix-up} (v, e)
- Replace \(e \) with \(e' \) in sweep line
- \text{helper} (e') \ensuremath{\leftarrow} v

Lower-chain vertex \((v) \):
- Let \(e \) be edge above
- \text{fix-up} (v, e)
- Let \(e' \) be edge to left, \(e'' \) to right
- Replace \(e' \) with \(e'' \) in sweep line