Metric Spaces: Distances modeled as metric space \((X, f) : f : X \times X \rightarrow \mathbb{R}^{\geq 0} \), s.t. for all \(p, q, r \in X \):

- **Symmetry**: \(f(p, q) = f(q, p) \)
- **Positivity**: \(f(p, q) \geq 0 \) and \(f(p, q) = 0 \) iff \(p = q \)
- **Triangle Inequality**: \(f(p, q) \leq f(p, r) + f(r, q) \)

Euclidean Distance: for \(p, q \in \mathbb{R}^d \):

\[
\| p - q \| = \left[\sum (p_i - q_i)^2 \right]^{\frac{1}{2}}
\]

Voronoi Diagram: A fundamental structure for metric spaces.

Given a point set \(P = \{p_1, \ldots, p_n\} \) in \(\mathbb{R}^d \) called sites, we want to subdivide space based on each site's "region of influence"
Def: Voronoi cell for site \(p_i \)

\[
V_\mathcal{P}(p_i) = \{ q \in \mathbb{R}^d \mid \| p_i - q \| < \| p_j - q \|, \forall j \neq i \}
\]

Obs:
- Voronoi cells are **disjoint**
- For Euclidean dist, Voronoi cells are (possibly unbounded) **convex polyhedra**

Let \(h(i, j) = \{ q \mid \| p_i - q \| < \| p_j - q \| \} \)

\(h(i, j) \) - halfspace bounded by perpendicular bisector between \(p_i \) and \(p_j \)

\[
\text{Vor}(p_i) = \bigcap_{j \neq i} h(i, j)
\]

- intersection of halfspaces \(\Rightarrow \text{polytope} \)
Def: \(\text{Vor}(P) \) is the subdivision (cell complex) induced by \(P \)'s Voronoi cells.

- \(\text{Vor}(P) \) covers \(\mathbb{R}^d \)
- Has \(n \) cells (faces of dim \(d \))
- Polyhedral subdivision (for Euclidean dist)
- Combinatorial complexity:
 - \(\mathbb{R}^2: O(n) \) edges + vertices
 - \(\mathbb{R}^d: O(n^{[d/2]+1}) \) size [Closely related to convex polytopes in \(\mathbb{R}^{d+1} \)]

Many applications:

Nearest neighbor search:

Preprocess a set of sites \(P = \{ p_1, \ldots, p_n \} \subset \mathbb{R}^d \)

s.t. given any query point \(q \in \mathbb{R}^d \)

can find \(q \)'s nearest site

How?

- Compute \(\text{Vor}(P) \)
- Build a point-location data structure for \(\text{Vor}(P) \)

 [Optimal in \(\mathbb{R}^2 \). Not as good in \(\mathbb{R}^d \).]
Point-based Clustering:
- Given set T of training points, group them into k clusters
- Clusters are defined by k cluster centers $\{c_1, \ldots, c_k\}$
- Cluster membership based on closest center
- k-means clustering

Variations:
- Other metrics: L_1-Vor diagram (Manhattan distance)
- Weighted pts:
 - Multiplicative: $\text{dist}(q, p_i) = \alpha_i \| p_i - q \|
 - Additive: $\text{dist}(q, p_i) = \| p_i - q \| + \omega_i$
- k^{th} Nearest:
 - $\text{Vor}_k(P) = \text{subdivide based on } k^{th}$ closest

[Diagram showing clustering with centroids c_1, c_2, c_3, c_4 and points assigned to clusters]
\(\text{Vor}_n(P) = \text{farthest point Vor. diag} \)
- Other shapes:
 - Voronoi diagram of line segments
 - Medial axis of polygon centers of maximal disks

Properties of the Voronoi Diagram:

Empty-circle Property:

A pt \(q \) is on an edge of the Vor. diag iff there is a circle centered at \(q \) that passes through 2 sites \(p_i \) and is otherwise empty.

Circumcircle Property: A pt \(v \) is a vertex of the diagram iff it is the center of a circle passing through 3 sites \(p_i \) and is otherwise empty.
Hull Property: A site \(p_i \) has an unbounded Voronoi cell iff \(p_i \) is on boundary of convex hull of \(P \).

Constructing Voronoi Diagrams in \(\mathbb{R}^2 \):

- **Incremental** - add a site; update (best if randomized)

- **Divide + Conquer** - \(O(n \log n) \)

- **Plane Sweep** (this lecture)
 - Fortune's Algorithm - \(O(n \log n) \)

Difficulty with Plane Sweep:

How can you process these when you haven't discovered \(p_i \) yet?
Clever twist: We’ll maintain two sweeping structures: sweep line + beach line

Def: Given a set of pts R and pt q, define

$$\text{dist}(q, R) = \min_{p \in R} ||p - q||$$

Given a sweep line l (horizontal + moving down) define

$P^+(l)$ to be sites lying above l

$P^-(l)$ to be sites lying below l

Given sweep line l, define the beach line to be the set of pts $q \in \mathbb{R}^2$ that are equidistant from $P^+(l)$ and l

$$\text{beach}(l) = \{ q \in \mathbb{R}^2 \mid \text{dist}(q, P^+(l)) = \text{dist}(q, l) \}$$
Beach-line Structure:
The points equidistant to a site \(p \) and line \(l \) form a parabola (wider as \(p \) is higher).

The beach line is the lower envelope of these parabolas for all sites in \(P^*(l) \).

- Beach line is \(x \)-monotone
- A single site may contribute 0, 1, or multiple arcs

Total complexity is \(\mathcal{O}(|P^*(l)|) = \mathcal{O}(n) \)
[Proof: Exercise]
Key: The portion of $\text{Vor}(S)$ above the beach line is "safe" from sites lying below l.

Fortune's Algorithm:

Sweep-line status:
- y-coord of sweep line
- seq. of sites (left to right) that contribute arc to beach line (e.g. $<2,1,2,3,2>$)
- Parabolic arcs not computed
- Breakpoints generated as needed

P_i cannot affect $\text{Vor}(S)$ above beach line (l)
Voronoi diagram: Portion of Voronoi diagram (rep. as DCEL) above beach line is stored/updated.

Events:

Site event: Sweep line passes over a site

Vertex event (circle event):
- A new Voronoi vertex is discovered
- An arc on beach line vanishes

Priority Queue: Stores y-coords for sweep line at events.

Site events: Easy—just y-coord of site (static)

Vertex events: Tricky! (see below)
Scheduling vertex events:

- For each consecutive triple \(<... p_i, p_j, p_k...>\) on beach line compute lowest y-coord of circumcircle \((p_i, p_j, p_k)\).
- Schedule vertex event when sweep line reaches this y-coord.

Site Event: for site \(p_i\):
(1) Find arc of beach line above \(p_i\).
(2) Split this arc: \(<... p_j, ...> \Rightarrow <... p_j, p_i, p_j, ...>\).
(3) Create a new "dangling" edge (between \(p_i + p_j\)) add to Voronoi diagram.
(4) Update priority queue vertex events (below)

Vertex Event: for triple \(\langle p_i, p_j, p_k \rangle \)

(1) Delete \(p_j \)'s arc from beach line

\[\langle \ldots p_i p_j p_k \ldots \rangle \Rightarrow \langle \ldots p_i p_k \ldots \rangle \]

(2) Create new Voronoi vertex joining edges \(p_i p_j + p_j p_k \) in diagram

(3) Start new (partial) Voronoi edge for \(p_i p_k \)

(4) Update priority queue vertex events

Analysis: - \(O(n) \) events
- \(O(\log n) \) per event
- \(O(n\log n) \) total time