Range Searching: (Data structure problem)
- Given a point set $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$
- Given a class of shapes (e.g., rectangles, balls, triangles, halfspaces)
- Build a data structure so that:
 - Given any query region Q from the class, quickly identify the points of P in Q
What types of Queries?

- **Emptiness**: Any pts of P in Q?

- **Counting**: How many? \(|P \cap Q|\)

- **Weighted count**: Each \(p \in P\) has weight \(w(p)\). Return total weight \(\sum_{p \in P \cap Q} w(p)\)

- **Semigroup weight**: Any commutative associative function of wts:

 \[\text{Eg. max-query: } \max_{p \in P \cap Q} w(p) \]

- **Reporting**: List the pts of \(P \cap Q\)

- **Top-k**: List just the highest \(k\) pts of \(P \cap Q\) based on weights
Complexity Bounds:

Space: Total space needed to store points + data structure

Query time: Time needed to answer a query

Construction time: Time to build structure

Common: $(\text{Space bound}) \cdot O(\log n)$

Gold standard: $O(n)$ space

$O(\log n)$ query time

$O(n \log n)$ constr. time

Many geometric structures are inferior w.r.t. space: $O(n \log^2 n)$ $O(n \log^d n)$ in \mathbb{R}^d

$O(n^2)$

or Query time:

$O(\log^2 n)$ $O(\sqrt{n})$

$O(n^{1-\frac{1}{d}})$ in \mathbb{R}^d
Orthogonal Range Queries:

Query region is **axis-aligned rectangle**

E.g. Given pts $a, b \in \mathbb{R}^d$ s.t. $a_i < b_i \forall i$

![Diagram of a rectangle with points a and b and a query region Q(a,b)]

Query rectangle is **product of intervals**:

$$Q(a,b) = \{ p \in \mathbb{R}^d \mid a_i \leq p_i \leq b_i \}$$

$$= [a_1, b_1] \times \ldots \times [a_d, b_d]$$

Common in database queries:

How many patients with age $\in [25, 35]$ weight $\in [100, 200]$ blood pressure $\in [80, 120]$
General approach to answering range queries:

- Too slow to count pts one by one
- Too much space to precompute answer to every possible query

- Canonical subsets:
 Carefully select an (ideally small) collection of subsets of P so that the answer to any query can be formed as (disjoint) union of a small number of subsets.

Example: 1-dimensional range query

$P = p_1 < p_2 < ... < p_n$ in \mathbb{R}

- Store P as leaves of a balanced tree
- Leaves of each subtree form canonical set

![Diagram]

Canonical subset $\{9, 12, 14, 15\}$
- The answer to any 1-dim range query can be expressed as the disjoint union of \(O(\log n) \) canonical subsets.

- Example: \(Q = [x_{lo}, x_{hi}] = [2, 23] \)
 \[P \cap Q = \{33\} \cup \{4, 7\} \cup \{9, 12, 14, 15\} \cup \{17, 20\} \cup \{22\} \]

- Cover the range with maximal subtrees
- Take union of the associated canonical subsets
- \(O(\log n) \) subtrees always suffice.
- \(O(n) \) nodes \(\Rightarrow \) \(O(n) \) canonical subsets

Compose the Answer to Query from Subsets:

- **Counting query**: Node stores \# of leaves
- **Weighted count**: Node stores total weight of leaves
- **Max query**: Node stores max of all weights in leaves

... Can answer queries in \(O(\log n) \) time by combining subtree results (assuming you can identify the canonical subsets for query + precompute info.)
kd-Trees: A natural generalization of 1-d trees to higher dim

1-d tree, 2-d tree, ..., k-d tree

Jon Bentley (1975)

Numerous variants - we present one

- Assume have large bounding box B containing P

- Recursively split space by axis-orthogonal hyperplane

cutting dimension: which axis

cutting value: where to cut

Spatial subdivision

Tree structure

Cell: Each tree node represents a rectangular region
Design choices:

- Where are points stored?
 - Internal nodes (used for splitting)
 - External nodes (leaves)

 \[\text{Permits more flexibility in where to split} \]

- How is cutting dim chosen?
 - Alternate: \(x, y, x, y, \ldots\) or \(x, y, z, x, y, z, \ldots\)
 - Select based on point distribution

- How is cutting value chosen?
 - Median (balanced height)
 - Midpt (geom. balanced)

Our structure:

- Points stored at leaves (external nodes)
- Alternate splitting axes
- Split at median
Construction:
Tree can be built in $O(n \log n)$ time

$$T(n) = n + 2T\left(\frac{n}{2}\right)$$

- Find median
- Recursively build subtrees
- Splitting coord

= $O(n \log n)$

Slight improvement: Presort the points d times into d lists - one for each coordinate + cross-link entries
- Faster in practice

Space: $O(n)$
- n leaves (one per point)
- $(n-1)$ internal nodes
- $O(1)$ info per node

Range Search:
Key: If node’s cell does not overlap Q → Don’t visit
If node’s cell completely in Q → Count all its pts
Algorithm: Weighted range count in kd-tree

range-count(Rect Q, KdNode u)
if (u is leaf)
 if (u ∈ Q) return u.point.weight
 else return 0
else (u is internal)
 if (u.cell ∩ Q = ∅)
 return 0 (no overlap)
 else if (u.cell ⊆ Q)
 return u.weight (total weight)
 else
 return range-count(Q, u.left) + range-count(Q, u.right)

Leaf:

Internal:

No overlap

Containment

Partial
Example:

[Diagram showing a kd-tree with nodes labeled and regions shaded to indicate included and excluded points.]

Query Time:

Thm: Given a height-balanced kd-tree in \mathbb{R}^2 using alternating splitting axes, orthog. counting queries can be answered in $O(\sqrt{n})$ time.

[Reporting queries in time $O(k + \log n)$, where $k = \# \text{ of points reported}$.]

Proof: Query rectangle bounded by 4 lines

We’ll show that each line stabs $\leq \sqrt{n}$ cells of tree $\implies O(4\sqrt{n})$
Key: Because we alternate cutting dim for every 2 levels of tree, any axis parallel line can stab at most 2 out of 4 grandchild cells

Since we use balanced splitting:

- parent: n pts
- child: $n/2$ pts
- grandchild: $n/4$ pts

\Rightarrow Query time:

$$T(n) = 2T(n/4) + 1$$

- Recurse on 2 of 4 grandchildren
- Constant time per cell

$= O(\sqrt{n})$ [see lect. notes for details]