Recall: Range Search
Given a set of \(n \) pts \(P = \{ p_1, \ldots, p_n \} \subseteq \mathbb{R}^d \), and class of shapes (range space) preprocess \(P \) to answer range queries:
Given shape \(Q \), count/report the pts in \(P \cap Q \).

\(P + \) shape = rectangles
Data structure
Ans: 10 pts of \(P \) in \(Q \)

Last lecture: \(kd \)-trees
\(O(n) \) space / \(O(n \log n) \) build time
\(O(\sqrt{n}) \) query time (in \(\mathbb{R}^2 \))
\(O(n^{1-\frac{1}{d}}) \) in \(\mathbb{R}^d \)

Today: Orthogonal Range Trees
+ Layered Data Structures
Multi-Layered Structures:

Suppose your ranges are formed from composing multiple (independent) queries:

Eg. Find all patients of
- age between 25..35 : Q_1
- weight \leq 200 lbs : Q_2
- blood pressure \geq 100 : Q_3

Idea: Design a data structure for each query type and merge them.

How to merge?
- Build range structure for age for P
 \Rightarrow Canonical subsets: $P_1, P_2, ..., P_m$
- For each P_i, build a range structure for weight
 \Rightarrow Canonical subsets: $P_{i1}, P_{i2}, ...$
- For each P_{ij}, build range structure for blood pressure
Multi-Layered Search Tree:

- Store data in leaves of tree
- Each node's canonical subset consists of its leaves
- For each node, build a search tree for its canonical subset, called its auxiliary tree

Example:
1-Dimensional Range Tree: (Review)

- Given set of scalars: \(P = \{ p_1, \ldots, p_n \} \subseteq \mathbb{R} \)
- Store as leaves in balanced search tree \(\mathcal{O}(n) \) space
 \(\mathcal{O}(n \log n) \) construct.

- Each node \(u \) stores num. of time leaves: \(u \).size

- Given query interval \(Q = [Q_{lo}, Q_{hi}] \)

- Identify \(\mathcal{O}(\log n) \)
 maximal subtrees that cover \(Q \)

- Add up sizes for all these nodes

Query answer = \(1 + 2 + 4 + 2 + 1 = 10 \)
Range counting algorithm:

Node u:
- u.point: point p (if u is leaf)
- u.x: split value (if u internal)
- u.size: # leaves (if u internal)
- u.left, u.right: children

\[
\text{range1Dx}(\text{Node } u, \text{Range } Q, \text{Interval } C = [x_0, x_1])
\]

 if (u is leaf)
 \[
 \begin{cases}
 1 & \text{if } u\.point \in Q \\
 0 & \text{otherwise}
 \end{cases}
 \]
 \]

 else if ($C \cap Q = \emptyset$) (no overlap)
 return 0

 else if ($C \subseteq Q$) (contained)
 return u.size

 else
 return $\text{range1Dx}(u\.left, Q, [x_0, u\.x])$
 \quad + $\text{range1Dx}(u\.right, Q, [u\.x, x_1])$
Orthogonal (2-d) Range Tree:

- Given points $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$

- Build a 1-d range tree for P based on x only (data in leaves)

- For each internal node u, let $P(u)$ be points in its leaves (canonical subset)

- Build a 1-d range tree for $P(u)$ sorted by y-coords
To process query \(Q = Q_{lo, hi} \) = \([Q_{lo,x}, Q_{hi,x}] \times [Q_{lo,y}, Q_{hi,y}] \):

- Apply 1-d search in main tree with query \([Q_{lo,x}, Q_{hi,x}] \) to identify \(\mathcal{O}(\log n) \) maximal subtrees.

- For each root \(u \) of one of these max. subtrees, apply 1-d search in \(u.\text{aux} \) with query \([Q_{lo,y}, Q_{hi,y}] \).

- Return overall sum.

range 2D(Node u, Range Q, Interval C = [x_0, x_1])

```plaintext
if (u is leaf) \[ \begin{cases} 1 & \text{if } u.\text{point} \in Q \\ 0 & \text{o.w.} \end{cases} \]
return \[ \begin{cases} 0 & \text{if } Q.x \cap C = \emptyset \text{ (no x overlap)} \\ 0 & \text{if } C \subseteq Q.x \text{ (containment in x)} \\ \text{range 1Dy}(u.\text{aux}, Q, [-\infty, +\infty]) & \text{search aux, tree} \end{cases} \]

else (recursive)\[ \text{return range 2D}(u.\text{left}, Q, [x_0, u.x]) + \text{range 2D}(u.\text{right}, Q, [u.x, x_1]) \]
```
Space + Preprocessing Time:

- Since each node stores $O(1)$ data, total space = size of main tree + total size of aux. trees
- A tree with m leaves has size $O(m)$

$$\text{Space} = n + \sum_{u} |P(u)|$$

- Main tree’s height is $O(\log n)$
- Each leaf contributes a point to u.aux for each of its ancestors
 \Rightarrow Each point appears in $O(\log n)$ aux. trees
 $\Rightarrow \sum_{u} |P(u)| = O(n \log n)$

\Rightarrow Total space is $O(n \log n)$

Construction time:
- Naive: $O(n \log^2 n)$
- Better: Build aux trees bottom-up
 - Two child sets can be merged in linear time
$\Rightarrow O(n \log n)$
Query Time:

Main tree: $O(\log n)$ time
- Identifies $O(\log n)$ maximal subtrees
 - each has $\leq n$ points
 - each searchable in $O(\log n)$ time

\Rightarrow Total time = $O(\log n) \cdot O(\log n)$
$= O(\log^2 n)$

Thm: Using orthogonal range trees, 2-dim orthog. range (counting) queries can be answered in:

- $O(n \log n)$ space
- $O(n \log n)$ build time
- $O(\log^2 n)$ query time

\Rightarrow tk for reporting

Thm: Using orthogonal range trees, d-dim orthog. range (counting) queries can be answered in:

- $O(n \log^{d-1} n)$ space
- $O(n \log^d n)$ build time
- $O(\log^d n)$ query time

\Rightarrow tk for reporting
Can we do better?

You can shave off a $\log n$ factor for query times - Cascading Search

2-dim: $O(\log^2 n) \rightarrow O(\log n)$

d-\text{dim}: $O(\log^d n) \rightarrow O(\log^{d-1} n)$

(See latex notes)

Idea:

- Final aux trees can be stored as sorted arrays (trees not needed)
- Always searching for \textcolor{yellow}{same values:} Q_{low}, Q_{hi}, y
- Can exploit knowledge of answer in one array to find answer in another, without doing search from scratch.