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Motivation

e Differentiable Physics Simulation as a Network Layer

e Enables gradient-based learning and control
o Material estimation, motion control, model-based reinforcement learning
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Limitations with State-of-the-Art

e Differentiable rigid body simulation
v' Formulation not scalable to high dimensionality

e Learning-based physics
v' Unable to guarantee physical correctness

Key Contributions

e Dynamic collision detection to reduce collision dimensionality
e Gradient computation of collision response using implicit differentiation

e Optimized backpropagation using QR decomposition
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Gradients of Physics Solve

Formulation: Ma = f

Input: M and f. Output: a

[ ]
e Back propagation: use % to compute 3)161 and %—f, where L is the loss function.
O
ons 2L — _d T 9L _ qT
e Solution: 75 = —daz 55 = das
. A or T . . ~
where d, is computed from M'd, = % , and z is the solution of Ma = f.

Collision Response

e Collision Detection: dist(node;,face;,t) < &, where ¢ is the cloth thickness,
and ¢ is some time between two steps.

e Objective: introduce minimum energy to avoid collision:

dist(node;, face;,t) —d > 0

e Constraint formulation: Gx +h <0

e Objective formulation: Quadratic Programming:

1
minimize i(z —x)"W(z - x)

subjectto Gz+h <0
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Gradients of Collision Response
e Karush-Kuhn-Tucker (KKT) condition:

Wz — Wx+ G '\ =0
D(A\*)(Gz* +h) =0

e Implicit differentiation:

\%%

D(\)G  D(Gz* + h)

GT dz| [ Mdx-—-dG"\*
d\| — |-D(\*)(dGz* + dh)

10

Gradients of Collision Response

e Solution:
oL
s =dIwW
oL - * * T  yx 3T
(9—(} D()\ )d,\Z )\ dz
8‘C T *
o = —diD(V)

where d, and d, is provided by the linear equation:

Ry

1
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Acceleration of Gradient Computation

e Explicit solution of the linear equation: Gz+h<0

-1 T —19L "
d,=VW (I-QQ")VW -
T
dy — D()\*)lRlQT\/W_lg—f
where Q and R is obtained from:

dx Gz+h>0

VW 'GT = QR

e Theoretical speedup: O((n+m)3) > O(nm?)

12

Results

e Speed improvement in backpropagation.
e Scene setting: A large piece of cloth crumpled inside a pyramid.

Mesh Baseline Ours Speedup
Resolution Matrix Size  Run Time (s) Matrix Size Run Time (s) Matrix Size  Run Time
16x16 599 + 76 0.33 +0.13 66 + 26 0.013 + 0.0019 8.9 25
32x32 1326 4+ 23 1.24+0.10 97 +24 0.011 £ 0.0023 13 112

64x64 2024 4+ 274 4.6 +£0.33 242 + 47 0.072 £ 0.011 8.3 64

The runtime performance of gradient computation is significantly
improved by up to two orders of magnitude

13
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Results

e Application: Material estimation

e Scene setting: A piece of cloth hanging under gravity and a constant wind

force.
Method Runtime Density Non-Ln Streching Ln Streching Bending Stiffness Simulation
(sec/step/iter) Error (%) Stiffness Error (%) Stiffness Error (%) Error (%) Error (%)
Baseline - 68 +46 74 +23 160 £+ 119 70 + 42 124+ 3.0
L-BFGS [30] 2.89 +0.02 42+56 64 + 34 72 +90 70 + 43 49+33
Ours 2.03 £ 0.06 1.8 £2.0 57+29 45+ 41 77 + 36 1.6+14

Our method achieves the best runtime performance & the smallest error

14

Results

e Application: Motion control

e Scene setting: A piece of cloth being lifted and dropped to a basket.

Method Error (%) Samples
Point Mass 111 -
PPO [18] 432 10,000
Ours 17 53
Ours+FC 39 108

Our method achieves the best performance with a much
smaller number of simulations

15
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Video Demos

Baseline - Treating as point mass

D)

4

Summary

e A fully differentiable cloth simulation
o Dynamic collision handling
o Derivations of gradients using implicit differentiation

e Backpropagation acceleration by using QR decomposition to obtain the
explicit solution

e Application examples: material estimation and motion control
o Enabling ‘simulate-and-compare’ when embedding with deep network

[ |:

47
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Scalable Differentiable Physics for
Learning and Control

Yi-Ling Qiao’, Junbang Liang', Vladlen Koltun?, and Ming C. Lin’

'University of Maryland at College Park
%Intel Labs

https://gamma.umd.edu/researchdirections/miphysics/diffsim/

& MARYLAND ICML 2020 (i@ - ] ;H
Motivation

e Differentiable Physics Simulation as a Network Layer
o Control of physical systems

19
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Motivation

e Scalable Differentiable Physics
o Large number of interacting objects
o Non-trivial shapes
o Large variety of object sizes
o Different physical properties/material types

20

Related Work

e Particle based differentiable simulation

o DiffTaichi (Hu et al. 2019)

o Cannot scale to large scenes: cubic growth regarding resolution/sizes
e Rigid body differentiable simulation

o Degrave et al. (2017) (collisions only between balls and planes)
o de Avila Belbute-Peres et al. (2018) (2D Simulator)

o Not general enough: cannot support general 3D shapes
e Mesh based differentiable cloth simulation
o Liang et al. (2019)

o Not general enough: 3D deformable cloth only

21
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Our Approach

1. Scalable

o Localized collision handling
o Fast differentiation

2. General
o Modeling different objects
o Interaction between different dynamics

collisions are sparse
compute the gradients efficiently in large scenes

mesh scales well and can model complex objects

coupling between rigid body and cloth

24

Our Approach

1. Scalable
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Our Approach
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Mesh Simulation Flow

1. Init X0, V0, Af, t=10
2. Compute Av from x;, v¢

o Av = M (xp1, Vi) x At
3. Xpi1 =Xt + Vi1 x AL, Vi = v+ Av
4. X411, vip1 = resolve_collision (Xs41, Viy1)
t=1t+1, goto 2

o

28

Mesh Simulation Flow: Backpropagation

Gradient computation available?

1. Init X0, V0, At, t=20 \/ Handled by auto-differentiation
2. Compute Av from x;, v¢

° Av = M (X441, Visl) ¥ At ?

o Newton’s method
3. il‘—i-l = X; + {’t+1 * At, {}1‘+1 =Vt Av \/ Handled by auto-differentiation
4. Xt 1, Vi1 = resolve_collision Xy 1, Vii1) ?
S t=t+ 1, goto 2 ‘/ Handled by auto-differentiation

29
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Implicit Differentiation: Linear Solve

e Formulation: Ma = f

e Input: M and f. Output: a

P oL oL aL
e Back propagation: use 4= to compute v and 55

L: the loss function.

30

Implicit Differentiation: Linear Solve

. aoation: nee 2L oL
e Back propagation: use 7= to compute 7=

and % where L is the loss function.

e Implicit differentiation form: 9Ma + Moa = Of

s 9L T 9L _ AT
e Solution: XL d,z 5F = d,,
where d, is computed from M'd, = % , and z is the solution of Ma = f.

31
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Mesh Simulation Flow: Backpropagation

Gradient computation available?

1. Init xq, v, At, t =0 v
2. Compute Av from x;, v¢
°© AV = MU (xy41, Vi) * At v

o Newton’s method
3. it+1 =X; + \7}_,_1 * AIL, {’H—l = Vi + Av ‘/

4 X;41, Vis1 = resolve_collision (X4 1, V1) v ngﬁtmﬁt‘)ﬂiﬁ?“a“om
-t=1t+1, goto 2

)]

32

Our Goal

e Scalability regarding resolution and shape
o Mesh-based representation
e Scalability regarding material and quantity
o Coupled physics between rigid body and deformable cloth

o Localized collision handling

33
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Mesh Simulation Flow

1. Init xq, v, At, t =0

2 Compute Av from xy, vi
o Av = M_lf(Xf+1, Vi) x At
o Newton’s method

3. Xii1 =Xt + Vi1 ¥ AL, Vi = v+ Av

4. Xy, 1, Vi1 = resolve_collision(Xs 41, Vi)

S t=t+1, goto 2

34

Dynamics Formulation

e Simulated objects: rigid body and deformable cloth

e Degree of freedom: 6 for rigid body, 3m for deformable cloth
T T T

e Stacked general coordinates: 9 = 91,92 .4, ]

o @k € R® for rigid bodies

o g € R*" for clothes

e Dynamics:
((III(Z>:(§):<M_13"(Q-Q))

k: object index, m: # of vertices of a cloth, n: # of objects 35
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Collision Handling

e Global LCP solve for rigid bodies
o Good at static contacts and static frictions
o Difficult to couple with other materials
o Slow
e Local constraint solver for clothes
o Impulse-based solution: easy to couple between different materials
o  Solve within independent zones: faster computation
o Unstable for large scale static contacts

36

Collision Handling
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Local Collision Handling

Impact zone model (Harmon et al. 2008)

e Constraints built upon impacts
e Linear w.r.t. vertex positions
© Cee =n - [(azxs + ayzxy) — (1@ + oo)]

Cz'f =Mn- [.’134 — ((\‘1151 + (voo + (1’;;17;;)]

£

a;: barycentric coordinates of each vertex at collision EE ImpaCt VF Illl‘p\ it
38
Local Collision Handling
Impact zone model (Harmon et al. 2008)
e Introduce minimum energy: QP formulation
. 1
minimize 5(X —x')"M(x - x)
x’ Z
subjectto Gx'+h <0
composed of: Cyf = n-[zy— (121 +oxs + aszrs)] < 0
e Solve the optimization for each “connected component’ of impacts
M: mass matrix, G and h: constraint matrix and vector 39
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Local Collision Handling

Coupling with rigid bodies

e Treating one rigid body as one node

e Nonlinear constraint for optimization

. 1
minimize —
q’ 2

subjectto Gf(q')+h <0

(a—d) M(a—4q)

f(-): a function mapping from general coordinates ¢ to some endpoint x

40

Gradient Computation for Collision

e Optimization problem:

minimize (q — q')TM(q —q')
q’

subjectto Gf(q')+h<0

DD | =

°
Stationarity (gradient=0), and complementary slackness

Mz* —Mq+Vf G \* =0
DA )(Gf(z")+h)=0

o

Karush-Kuhn-Tucker (KKT) condition at optimal point:

42

20
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Results
1. Scalable
o Large number of objects - Linear w.r.t. number of objects

o High resolution

2. General
o Complex objects
o Two-way Coupling - Constant

3. Applications
o Inverse Problem - Faster than derivative-free methods

o Control - Faster than RL

Results - Scalable

Scale the number of objects

Scene setting: A bunch of (20 - 1000) objects collide with the ground.
o Methods: Ours vs. ChainQueen[8] (on CPU, for 2 second)
o Scale the number of objects, while keeping the density of collisions and objects

o When the number of object scales from 20 to 200, the grid size of ChainQueen[8] scales from

64 to 640

21
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time(s)

Results - Scalable

Scale the number of objects

Scene setting: A bunch of (20 - 1000) objects collide with the ground.
Our method scales well (linearly) in large scenes with big number of objects.
1500 : : 210! ,
MOurs MOurs
M ChainQueen . M ChainQueen
1000 g '
§ 1
500 g
E0.5
0 0 \
0 200 400 600 800 1000 0 200 400 600 800 1000
number of objects number of objects /)

Results - Scalable

e Scale the resolution

e Scene setting: A bunny and a piece of cloth. Vary the relative sizes of cloth.
o Methods: Ours vs. ChainQueen[8] (on CPU, for 2 second)
o The relative size of two cloths: n:1.
o nscales from 1 to 10.
o The grid size of ChainQueen[8] scales from 64 to 640

22
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Results - Scalable

e Scale the resolution

e Scene setting: A bunny and two piece of cloths. Vary the relative sizes of

clothes.

e Our method runs in constant time in different resolutions.

1500

' o > B
:g:rs Q M Ours Y \ l l I\ y
aintueen M ChainQueen \ l
1000 @5 |
[ & IR
E g1
500 aE)
Eos:
0 0
0 2 4 6 8 10 0 2 4 6 8 10 i)
scale scale
(b) Running time (c) Memory consumption e

50

Results - Inverse Problem

Learn the trajectory

Scene setting: Compute the force on the marble in each step to drive it to a target
point.
o Methods: Ours vs. CMA-ES

o The combined force vector has 100 dimensions

o  Object function: the distance to target + norm of the force vector

51
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Results - Inverse Problem

Learn the trajectory
Scene setting: Compute the force on the marble in each step to drive it to a target
point.

Our method converges more than 10x faster than CMA-ES.

(o]

objective function
n

BMours
BICMA-ES

N

o
o

50 100
episode

(b) Objective function

Results - Control

e Manipulation

e Scene setting: Control the motion of a pair of parallel grippers, to move an

object towards a random target in 2 second
o Methods: Ours vs. DDPG[6]
o Fixed initial position and random target.
o Loss is the L2 distance from the target to the current position. Reward = -1 * Loss
o Observation: [x_now - x_target, v_now, time, reward]

o Action: [v_next]

53
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Results - Control

e Manipulation

e Scene setting: Control the motion of a pair of parallel grippers, to move an

object towards a random target

o Our method converaes much faster than RL
2.57 )

_L
oon

M Ours
BDDPG

loss function

o
o »
o

50 100 150 200
episode

54

Results - Control

e Motion control

e Scene setting: Control the motion of four handles on a cloth, to move the cube

towards a random target
o Methods: Ours, DDPG[6]
o Fixed initial position and random target.
o Loss is the L2 distance from the target to the current position. Reward = -1 * Loss
o Observation: [x_now - x_target, v_now, time, reward]

o Action: [v_next]

55
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Results - Control

e Motion control

e Scene setting: Control the motion of four handles on a cloth, to move the cube

towards a random target

e Our method converges much faster than RL

0.6
é 0.4 MMWA Ao MMW
o M Ours
= MDDPG
% 0.2

0 50 100 150 200
episode

Results - General

e Two-way coupling between cloth and rigid body

e Scene setting: Cloth & dominos

———

»”‘

= \X @? x%'o>>¢

S

57

26



9/23/21

Conclusion

e A method for scalable and general differentiable physics

e Future work

o More general dynamics
o More Application

Video Demonstration

Scalable Differentiable Physics for
Learning and Control

Submission ID: 15

59
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Efficient Differentiable Articulated Dynamics

Yi-Ling Qiao*, Junbang Liang*, Vladlen Koltun, and Ming Lin*

*@UNIVEYR?_IITYOF :|@

Code & data: https://github.com/YilingQiao/diffarticulated

60

Motivation

e Differentiable articulated body simulation as a network layer
o  Control physical systems
o Enhance reinforcement learning
o Estimate physics parameters

61

28


https://github.com/YilingQiao/diffsim
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Applications

™ D ¥
n & -

control-walker control-fem control-cloth

. -

estimate Initialization

Ground Our final
truth

~
1]
(=]

[2] Murthy et al. (2021)
[5] Song et al. (2020) 62

Related/concurrent work

[1] Geilinger et al. (2020) [7] Werling et al. (2021)

63
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Content

e Related Work
e Our Method

o Differentiating the simulation

o Application to reinforcement learning

e Results

64
positions, articulated momentum,
" transformations articulated inertias, body accelerations, new
states velocities, etc. torques. etc joint accelerations T states
] \ — —
! 1T * 1 ! | collision |
. I 0 - ] [ . 3?1 l:fll(())llll time
N v o i o ¥ = . time
' or18
¥ ] [ + ] [ ¥ | NCP solver micgration
L2 . ‘ 4 | | L2 \ — J
update update update collision
kinematics forces accelerations resolving
65
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Checkpointing

Forward and backward workflow with checkpointing scheme

— forward/resume

<«—— backward
store
checkpoints forward simulation
k -k __k . i k41 - k+1
4 qu Forward Collision | | Time _i q
Dynamics Resolving [ |Integration
reload
checkpoints backward differentiation
/-' . L -
q" q"u’ — :
Forward [’| Collision [’| Time
«-[-{ Dynamics |- { Resolving [«-{Integrationf«-|- - \
R k1 Tkl
a" q" ot a'q
66
positions, articulated momentum,
transformations articulated inertias, body accelerations, new
states velocities, etc. torques, etc joint accelerations " States
] \ — —
v 4 v ( L. \
. ] [ i ] [ ¥ collision
letecti me
4 N : : . j : v - (elci on ' 11mg. 4
[4)
v | ‘ 7y | : 3 | NCP solver mtegration
| —
¥ — * 1 ' —
update update update collision
kinematics forces accelerations resolving
checkpoints Intermediate variables
67
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Application with Reinforcement Learning

e Sample enhancement
o Increase sample efficiency

o Faster convergence

e Policy enhancement
o Update the policy using analytic gradients

o Better scalability in high dimensionality

68

Sample Enhancement

e Idea: Use simulation gradients to generate extra nearby examples

e Point sample — patch sample

o Faster convergence
ar = ap + Aay,

0s|
S;c = 86 + 8—C£Aak
or
rL =T+ 8@0 Aay
0

Enabled by differentiable simulation!

a: action

s: observation 69
s’: next-step observation

r: reward

32
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Policy Enhancement

L= ~Q(s.u(s) + Z

Soft Actor-Critic

a: action

s: observation

s’ next-step observation
r: reward

Q: critic network

W: policy network

Z: regularization term

e |dea: Use simulation gradients to compute better policy gradients

e Use one-step rollout to approximate the action gradients

0Q(s,a) _|or|, _0Q(s ()05’
da  |0a i 0s’ da
r _8@(8,&)
‘C,u, - aa /.L(S) + Z
Ours

Enabled by differentiable simulation!

70

Content

e Related Work
e Our Method

o Adjoint derivation

o Application with reinforcement learning

e Results

7
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Results - Performance

e Compare the runtime and memory usage.

e Scene: One Laikago released from the air and hitting the ground
o Scale the simulation length: 50, 100, 500, 1000, 5000 steps

e Comparisons:

o Use autodiff tools in the same simulation pipeline

72
Results - Performance

e Compare the runtime and memory usage.

e Scene: A Laikago released from the air and hitting the ground

e Our method has the highest speed and the lowest memory usage

o x10 faster than autodiff tools with 1% of memory usage

steps 50 100 500 1000 5000 steps 50 100 500 1000 5000
ADF 25.7 25.5 25.1 32.1 58.4 ADF 25.7 25.5 25.1 32.1 58.4
Ceres 27.2 27.5 27.2 34.0 58.2 Ceres 27.2 27.5 27.2 34.0 58.2
CppAD 2.4 2.4 2.3 2.3 4.5 CppAD 2.4 2.4 2.3 2.3 4.5
JAX 53.3 46.1 43.1 42.7 42.3 JAX 53.3 46.1 43.1 42.7 42.3
PyTorch | 195.6 192.2 199.2 1928  N/A PyTorch | 195.6 192.2 199.2 192.8 N/A
Ours 0.3 0.3 0.2 0.2 0.2 Ours 0.3 0.3 0.2 0.2 0.2
Forward simulation time (ms) per step Peak Memory (MB) 73

9/23/21
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Policy Enhancement

e Scenario: N-link pendulum
e Obijective: reaching the highest point within 100 frames
e Reward

o -dist to_target’2
e Baseline: MBPO, SAC, SQL, PPO

e Number of links: 1-7

e Number of training epochs: 100 * n_links

o Samples per epoch: 100

74

Policy Enhancement

e Test metric: Best relative reward

o Absolute reward / maximum possible reward (reaching exactly the target)

number of links
Our method scales with increasing system complexity

75
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Sample Enhancement

e Scenario: Mujoco Ant
e Objective: walking towards +x axis
e Reward
o V_x-sum(action*2)
e Baseline: MBPO, SAC, SQL, PPO

e Number of training epochs: 100

o Samples per epoch: 1000

Sample Enhancement

e Test metric:

o Maximum (absolute) reward 7000

6000
5000
4000

3000

reward

2000

1000

-1000 .
0 20 40 60 80

episode

Our method achieves the same best reward and converges faster 77
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Video Demonstration

https://youtu.be/RrWGLfR4wfk

78

Differentiable Simulation of
Soft Multi-body Systems

Yi-Ling Qiao*, Junbang Liang*, Vladlen Koltun, and Ming Lin*

& RAAESTAKDS  (inteD

79
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Motivation

e Self-powered soft robot in the Mariana Trench

Mariana Trench (10,900 m)

e

(Side view)
Deep-sea lander

Soft robot
mounted on
the lander

Powerand control  Voltage amplifier
i 1 Transformer

R oo

(Front view) -

(Front view)

Flapping
angle 6.3°

e 0
Motivation
e A Compliant Hand Based on a Novel Pneumatic Actuator.
81

9/23/21
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Motivation

e Dynamic Grasping with a “Soft” Drone

82

OBJECTIVE

o Differentiable Physics Simulator to support different scenarios
o Complex Contact
o Embedded Skeleton
o Joint, muscle, and pneumatic actuators

83
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Content

e Related Work
e Background
e Our Method

o Articulation
o Contact

e Results

84

Related Work

Motion Control - Optimization

Baseline - Point Mass

Liang et al. (NeurlPS 2019)
cloth

Qiao et al. (ICML 2020)
cloth + rigid body

85
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Related Work

v

Takahashi et al. (AAAI 2021)
Fluids + rigid body

Ant walking Episode 20

Ours MBPO

2 =
.
Ours is almost 2x faster than MBPO and 4x faster than SAC ’,; —

Qiao et al. (ICML 2021)
Articulated body

Related Work

Difftaichi (2019)

€ e

Gradsim (2021)

87

41



9/23/21

Related Work

DiffPD (2021)

Control Signal nyxv_n,‘uyx"vu__'x‘llx,. A, ,‘MIA..‘A,‘

DiffAqua (2021)

o]
Z

lo Optimized Design

.

& —

ll'A"lw“l‘Av.vl‘A‘l‘A"lwuyA"“

88

Content

e Related Work
e Background
e Our Method

o Articulation
o Contact

e Results

89
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Background

[6] Ly et al. (2020) [1] Li et al. (2018)

90

Background

Projective dynamics

Implicit Euler : M(dni1 — G = hvn) = R(VE(dn11) + fear)
Solve: uss = argmin i (a - ,) "M~ 5,) + E()
Local step: B(@) =325 G~ pil

Global step: Gn+1 = aTg i 30 <% + L> ataq’ (%s + Jp)

91
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Content

e Related Work
e Background
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Method - rigid bodies

Vertices on rigid bodies : qr = QT Vi

i+1 i i o, 0dk oq*
T =q.+Aq, =q} + Az}, = ZL
q;, qi = gy 02y, 2k B s

Linearize: q;

. T o1 1 TpT M TpT M i
New global step: Az = (11}21121111 5Az B (/1_2 + L> BAz+ Az' B W +L)q —
Local step: I+wi* 0 0 1l
T, = { 0‘”k 1] T + {0 6} =uUxv’
T, =UV'

M
II_QS“ + Jp

)

93

44



9/23/21

Method - Articulated body
T} = [[A.

Skeleton tree:

ian: JdT!V, 0A,
Jacobian: Bu,'u — p L= = QPU e - Su.uvu
0z, 0z,
Compute recursively: P,=P,A, P is the prefix product
’ S — A.S S is the suffix product
viu — vPv,u

Ais the local transformation matrix
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Method - Articulated body

Algorithm 2 Matrix Assembly for the Articulated System

1: Input: tree link u

2: Compute P, using Eq. 16

3 vé—u

4: while v is not root do

5: Compute S, ,, using Eq. 17

6: Compute B, ,, using Eq. 13

7: v 4— parent(v)

8: end while

9: Compute B, ;. using Eq. 15

for s in descendants(u) do
Solve link s recursively

: end for
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Method - Articulated body

Rotational joint. This joint is characterized by a rotation axis n and the angle 6. Its transformation
matrix and the Jacobian are:

r R
v=[o ] % =[t ) s
R = cosf - I+ sinf[n]y + (1 — cosf)nn" (19)
%—l: = —sinf-I+ cosf[n]y + sinfnn’ (20)
The local update of the rotational joint is given by:
6"t = arctan(sin 6" + cos ' Af*, cos @' — sin 0 AG") (21)
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Method - Articulated body

Prismatic joint. This joint is characterized by a prismatic axis u and the scale /. Its transformation

matrix and the Jacobian are:
, I [u OAP 0 u
P __ _
AP = [0 1] o = {0 0] (22)

(23)
The local update of the prismatic joint is simply addition:

=1+ Al (24)
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Method - Actuation - Joint Torque

Az' = arg min lAZTBT M +L)BAz+ Az BT M +L)q — Msn + Jp (8)
Ay 2 h?2 h?2 h?2

. . Hd H:— AZ& o kd
Solve a linear system: [Hc Hr] [Azi] = |:kr

Torques can be added to K_r directly
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Method - Actuation - Pneumatic

Pneumatic actuator. We use co-rotational elastic strain energy model for tetrahedral cells. For a
pneumatic cell with activation level a, the energy is computed as

k
\I/pneu.'rnatic(Fa a) = 72) “F - R(a)“Z (27)

where the SVD decomposition of the deformation gradient is F = uxv’, R(a) = ux*vrT,
¥* =D + %, and D is computed by

. 2 .
arg min D5, s.t. H(Eiz +D;)=a (28)
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Method - Actuation - Muscle

Muscle actuator. We use the muscle actuators described in [49]. Muscles are modeled as fibers in
the soft bodies, and the forces are computed as f,,,5c1¢ (@) = — frnuscie(@)m, where a € [0, 1] is the
activation level, m is the direction of fiber. To achieve this force, a strain energy model [32] is used,
Eruscie = Vimuscie Vinuscle (F, €), where U006 (F,a) = kT (1 — r)Fml||, k,, is the stiffness,

r = 15% is the projection of the cord segment, [ = ||[Fml/| is the stretch factor.
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Method - Contact

e Dry friction contact model
o Coulomb’s friction law
e Simplification
Ms = Mk
e |Implementation
o Normal momentum: cancelled out
o Tangential momentum
m Reverse impulse proportional to the
normal momentum
m No larger than the current momentum

Friction
Force
Pushing
Back
(Friction)

Fpush —
pus —
ﬂ Fr = Fpush
. Until the point
Fy where...
Ff = s * I:N
After that point it
drops down toand
staysat...
Fr= e+ Fy

Force Pushing on Book (Fy,q)

102
Method - Contact
Original global step:
M M
(]l_z + L) qn+1 = hjsn + Jp
Convert to velocity space:
Adjusted momentum Current momentum
Mv ! =f — R’Lv' + ¢
f = Ms, — (M + h?L)q, + h*Jp
Contact handling:
57" Depends on the relative velocities/momentums of collided vertices
103
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Method - Contact

e Friction law enforcement
o The new impulse is added to the individual vertex
o lteratively resolved until converged
e Convergence
o Not guaranteed
o Depends on M and L if f and ¢ are fixed
e Applicability to soft bodies
o L too large compared to M
o Unstable solve

Mv Tt = f — R2Lv? 4 &
f = Ms,, — (M + h*L)q,, + h*Jp

104

Method - Contact

e Improvement

o Move the diagonals of L to the left!

o (M+rD)WT =f—h*(L-D)v +¢

o When f and g are fixed, the improved method is guaranteed to converge
e Contact detection

o Continuous collision detection

o  Grouped vertex-face collision handling

m Contact forces need to be computed jointly

-
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e Ablation study
e Parameter estimation

e Motion Control

107

51



9/23/21

Results - Implementation

e Differentiation: Autodiff + Eigen3 + Checkpointing scheme

Table 1: Memory usage (GB).
steps  w/o ckpt  w/ ckpt

10 0.9 0.1
20 1.4 0.1
100 6.9 0.1
200 15.7 0.1
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Results - Ablation Study

e Skeleton

(a) Start (b) Ours (c) Passive [36] (d) Diffsim [50] (e) No skeleton  (f) MPM[22]
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Results - Ablation Study

e Contact

(a) Ours (b) Projective [45] (¢) Diffsim [50] (d) MPM [22]
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Parameter Estimation

e Scenario: suspension bridge
e Optimization variable: Young’s modulus and Poisson’s ratio
e Obijective: Compliance under gravity

e Baseline: CMAES

0.06 r

MCMAES |
Mours

objeciive function

0 50 100
episode
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Parameter Estimation

e Scenario: arch bridge
e Optimization variable: Young’s modulus and Poisson’s ratio
e Objective: Compliance under gravity

e Baseline: CMAES

objective function

episode

112

Motion Control - Skeleton

e Scenario: control a fish
e Optimization variable: joint torque
e Obijective: reach a target place

e Baseline: CMAES

0.03 ¢

BCMA-ES
Wours

objective function

0 200 400
episode
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Motion Control - Muscle

e Scenario: control an octopus
e Optimization variable: muscle actuation levels
e Objective: reach a target place

e Baseline: CMAES

BMCMA-ES
Mours

- o N

objective function
o
v

ot
0 100 200 300 400 500
episode
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Motion Control - Pneumatic

e Scenario: control a gripper
e Optimization variable: pneumatic activation
e Obijective: reach a target place

e Baseline: CMAES/MBPO
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Video Demonstration

https://voutu.be/TPgFM5WxzaU
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Questions?

https://gamma.umd.edu/researchdirections/virtualtryon/differentiablecloth

https://gamma.umd.edu/researchdirections/mlphysics/diffsim/

lin@cs.umd.edu

THANK YOU!!!

M7
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