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Motivation
● Differentiable Physics Simulation as a Network Layer
● Enables gradient-based learning and control

○ Material estimation, motion control, model-based reinforcement learning

○ Physical property estimation
○ Control of physical systems
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Differentiable Cloth Simulation

Junbang Liang1, Ming Lin1, and Vladlen Koltun2

1University of Maryland at College Park
2Intel Labs

https://gamma.umd.edu/researchdirections/virtualtryon/differentiablecloth
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NeurIPS 2019

https://gamma.umd.edu/researchdirections/virtualtryon/differentiablecloth
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Limitations with State-of-the-Art

● Differentiable rigid body simulation
ü Formulation not scalable to high dimensionality

● Learning-based physics
ü Unable to guarantee physical correctness
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Key Contributions

● Dynamic collision detection to reduce collision dimensionality

● Gradient computation of collision response using implicit differentiation

● Optimized backpropagation using QR decomposition

7
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Gradients of Physics Solve

8

Collision Response

9
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Gradients of Collision Response
● Karush-Kuhn-Tucker (KKT) condition:

● Implicit differentiation:

10

Gradients of Collision Response
● Solution:

where dz and dλ is provided by the linear equation:

11
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Acceleration of Gradient Computation

● Explicit solution of the linear equation:

where Q and R is obtained from:

● Theoretical speedup: O((n+m)3) à O(nm2)

12

Results
● Speed improvement in backpropagation.
● Scene setting: A large piece of cloth crumpled inside a pyramid.

13

The runtime performance of gradient computation is significantly 
improved by up to two orders of magnitude
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Results
● Application: Material estimation
● Scene setting: A piece of cloth hanging under gravity and a constant wind 

force.

14

Our method achieves the best runtime performance & the smallest error

Results
● Application: Motion control
● Scene setting: A piece of cloth being lifted and dropped to a basket.

15

Our method achieves the best performance with a much 
smaller number of simulations
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Video Demos

16

Summary

● A fully differentiable cloth simulation
○ Dynamic collision handling
○ Derivations of gradients using implicit differentiation

● Backpropagation acceleration by using QR decomposition to obtain the 
explicit solution

● Application examples: material estimation and motion control
○ Enabling ‘simulate-and-compare’ when embedding with deep network

17
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Scalable Differentiable Physics for 
Learning and Control

Yi-Ling Qiao1, Junbang Liang1, Vladlen Koltun2, and Ming C. Lin1

1University of Maryland at College Park
2Intel Labs

https://gamma.umd.edu/researchdirections/mlphysics/diffsim/
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ICML 2020

Motivation
● Differentiable Physics Simulation as a Network Layer

○ Control of physical systems

19

https://gamma.umd.edu/researchdirections/mlphysics/diffsim/
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Motivation
● Scalable Differentiable Physics

○ Large number of interacting objects
○ Non-trivial shapes
○ Large variety of object sizes
○ Different physical properties/material types

20

Related Work

● Particle based differentiable simulation
○ DiffTaichi (Hu et al. 2019)

○ Cannot scale to large scenes: cubic growth regarding resolution/sizes

● Rigid body differentiable simulation
○ Degrave et al. (2017)                            (collisions only between balls and planes)

○ de Avila Belbute-Peres et al. (2018)      (2D Simulator)

○ Not general enough: cannot support general 3D shapes

● Mesh based differentiable cloth simulation

○ Liang et al. (2019)

○ Not general enough: 3D deformable cloth only

21
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Our Approach

1. Scalable
○ Localized collision handling                      - collisions are sparse
○ Fast differentiation                                    - compute the gradients efficiently in large scenes

2. General
○ Modeling different objects                         - mesh scales well and can model complex objects

○ Interaction between different dynamics - coupling between rigid body and cloth

24

Our Approach

1. Scalable
○ Localized collision handling                      - collisions are sparse
○ Fast differentiation                                    - compute the gradients efficiently in large scenes

2. General
○ Modeling different objects                         - mesh scales well and can model complex objects

○ Interaction between different dynamics    - coupling between rigid body and cloth

25



9/23/21

13

Our Approach

1. Scalable
○ Localized collision handling                      - collisions are sparse
○ Fast differentiation                                    - compute the gradients efficiently in large scenes

2. General
○ Modeling different objects                         - mesh scales well and can model complex objects

○ Interaction between different dynamics    - coupling between rigid body and cloth

26

Our Approach

1. Scalable
○ Localized collision handling                      - collisions are sparse
○ Fast differentiation                                    - compute the gradients efficiently in large scenes

2. General
○ Modeling different objects                         - mesh scales well and can model complex objects

○ Interaction between different dynamics    - coupling between rigid body and cloth

27



9/23/21

14

Mesh Simulation Flow

1.

2.
○

3.

4.

5.

28

Mesh Simulation Flow: Backpropagation

1.

2.

○ S

○ Newton’s method

3.

4.

5.

Gradient computation available?

Handled by auto-differentiation

Handled by auto-differentiation

Handled by auto-differentiation

29
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Implicit Differentiation: Linear Solve

30

Implicit Differentiation: Linear Solve

31
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Mesh Simulation Flow: Backpropagation

1.

2.

○ S

○ Newton’s method

3.

4.

5.

Using implicit differentiation!
Algorithm-dependent

Gradient computation available?

32

Our Goal

● Scalability regarding resolution and shape
○ Mesh-based representation

● Scalability regarding material and quantity
○ Coupled physics between rigid body and deformable cloth
○ Localized collision handling

33
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Mesh Simulation Flow

1.

2.
○ S

○ Newton’s method

3.

4.

5.

34

Dynamics Formulation

● Simulated objects: rigid body and deformable cloth

● Degree of freedom: 6 for rigid body, 3m for deformable cloth

● Stacked general coordinates: 
○ for rigid bodies
○ for clothes

● Dynamics:

35
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Collision Handling

● Global LCP solve for rigid bodies
○ Good at static contacts and static frictions
○ Difficult to couple with other materials

○ Slow

● Local constraint solver for clothes
○ Impulse-based solution: easy to couple between different materials

○ Solve within independent zones: faster computation
○ Unstable for large scale static contacts

36
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Local Collision Handling
Impact zone model (Harmon et al. 2008)

● Constraints built upon impacts
● Linear w.r.t. vertex positions

○ S

38

Local Collision Handling

Impact zone model (Harmon et al. 2008)

● Introduce minimum energy: QP formulation

● Solve the optimization for each `connected component’ of impacts

39

composed of:
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Local Collision Handling

Coupling with rigid bodies

● Treating one rigid body as one node

● Nonlinear constraint for optimization

40

Gradient Computation for Collision
● Optimization problem:

● Karush-Kuhn-Tucker (KKT) condition at optimal point:
○ Stationarity (gradient=0), and complementary slackness

42
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Results

1. Scalable
○ Large number of objects          - Linear w.r.t. number of objects

○ High resolution    

2. General
○ Complex objects                      

○ Two-way Coupling                     - Constant

3. Applications
○ Inverse Problem                       - Faster than derivative-free methods

○ Control                                      - Faster than RL

46

Results - Scalable

● Scale the number of objects

● Scene setting: A bunch of (20 - 1000) objects collide with the ground.
○ Methods: Ours vs. ChainQueen[8]  (on CPU, for 2 second)

○ Scale the number of objects, while keeping the density of collisions and objects

○ When the number of object scales from 20 to 200, the grid size of ChainQueen[8] scales from 

64 to 640

47
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Results - Scalable

● Scale the number of objects

● Scene setting: A bunch of (20 - 1000) objects collide with the ground.

● Our method scales well (linearly) in large scenes with big number of objects.

48

Results - Scalable
● Scale the resolution

● Scene setting: A bunny and a piece of cloth. Vary the relative sizes of cloth.
○ Methods: Ours vs. ChainQueen[8]  (on CPU, for 2 second)

○ The relative size of two cloths: n:1. 

○ n scales from 1 to 10.

○ The grid size of ChainQueen[8] scales from 64 to 640

49
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Results - Scalable
● Scale the resolution

● Scene setting: A bunny and two piece of cloths. Vary the relative sizes of 

clothes.

● Our method runs in constant time in different resolutions.

50

Results - Inverse Problem
● Learn the trajectory

● Scene setting: Compute the force on the marble in each step to drive it to a target 

point.
○ Methods: Ours vs. CMA-ES

○ The combined force vector has 100 dimensions

○ Object function: the distance to target + norm of the force vector

51
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Results - Inverse Problem
● Learn the trajectory

● Scene setting: Compute the force on the marble in each step to drive it to a target 

point.

● Our method converges more than 10x faster than CMA-ES.

52

Results - Control

● Manipulation

● Scene setting: Control the motion of a pair of parallel grippers, to move an 

object towards a random target in 2 second

○ Methods: Ours vs. DDPG[6]

○ Fixed initial position and random target.

○ Loss is the L2 distance from the target to the current position. Reward = -1 * Loss

○ Observation:  [x_now - x_target, v_now, time, reward]

○ Action:           [v_next]

53
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Results - Control

● Manipulation

● Scene setting: Control the motion of a pair of parallel grippers, to move an 

object towards a random target

● Our method converges much faster than RL

54

Results - Control

● Motion control

● Scene setting: Control the motion of four handles on a cloth, to move the cube 

towards a random target

○ Methods: Ours, DDPG[6]

○ Fixed initial position and random target.

○ Loss is the L2 distance from the target to the current position. Reward = -1 * Loss

○ Observation:  [x_now - x_target, v_now, time, reward]

○ Action:           [v_next]

55
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Results - Control

● Motion control

● Scene setting: Control the motion of four handles on a cloth, to move the cube 

towards a random target

● Our method converges much faster than RL

56

Results - General

● Two-way coupling between cloth and rigid body

● Scene setting: Cloth & dominos

57
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Conclusion

● A method for scalable and general differentiable physics

● Future work
○ More general dynamics
○ More Application 

58

Video Demonstration

59
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Efficient Differentiable Articulated Dynamics

Yi-Ling Qiao*, Junbang Liang*, Vladlen Koltun, and Ming Lin*

*

60

Code & data:       https://github.com/YilingQiao/diffarticulated

Motivation
● Differentiable articulated body simulation as a network layer

○ Control physical systems
○ Enhance reinforcement learning
○ Estimate physics parameters

61

https://github.com/YilingQiao/diffsim
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Applications

62

[2] Murthy et al. (2021)

[5] Song et al. (2020)

Related/concurrent work

63

[1] Geilinger et al. (2020) [7] Werling et al. (2021)
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Content

● Related Work

● Our Method
○ Differentiating the simulation

○ Application to reinforcement learning

● Results

64

Workflow of one simulation step

65
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Checkpointing
Forward and backward workflow with checkpointing scheme

66

Checkpointing

67

checkpoints Intermediate variables
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Application with Reinforcement Learning
● Sample enhancement

○ Increase sample efficiency

○ Faster convergence

● Policy enhancement

○ Update the policy using analytic gradients

○ Better scalability in high dimensionality

68

Sample Enhancement
● Idea: Use simulation gradients to generate extra nearby examples

● Point sample → patch sample

○ Faster convergence

a: action
s: observation
s’: next-step observation
r: reward

Enabled by differentiable simulation!

69
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Policy Enhancement

● Idea: Use simulation gradients to compute better policy gradients

● Use one-step rollout to approximate the action gradients

Soft Actor-Critic Ours

a: action
s: observation
s’: next-step observation
r: reward
Q: critic network
μ: policy network
Z: regularization term

Enabled by differentiable simulation!

70

Content

● Related Work

● Our Method
○ Adjoint derivation
○ Application with reinforcement learning

● Results

71
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Results - Performance
● Compare the runtime and memory usage.

● Scene: One Laikago released from the air and hitting the ground

○ Scale the simulation length: 50, 100, 500, 1000, 5000 steps

● Comparisons:

○ Use autodiff tools in the same simulation pipeline

72

Results - Performance

● Compare the runtime and memory usage.

● Scene: A Laikago released from the air and hitting the ground

● Our method has the highest speed and the lowest memory usage

○ x10 faster than autodiff tools with 1% of memory usage

73Peak Memory (MB)Forward simulation time (ms) per step
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Policy Enhancement
● Scenario: N-link pendulum

● Objective: reaching the highest point within 100 frames

● Reward

○ -dist_to_target^2

● Baseline: MBPO, SAC, SQL, PPO

● Number of links: 1-7

● Number of training epochs: 100 * n_links

○ Samples per epoch: 100 74

Policy Enhancement
● Test metric: Best relative reward

○ Absolute reward / maximum possible reward (reaching exactly the target)

Our method scales with increasing system complexity 75
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Sample Enhancement
● Scenario: Mujoco Ant

● Objective: walking towards +x axis

● Reward

○ v_x - sum(action^2)

● Baseline: MBPO, SAC, SQL, PPO

● Number of training epochs: 100

○ Samples per epoch: 1000

76

Sample Enhancement
● Test metric:

○ Maximum (absolute) reward

77Our method achieves the same best reward and converges faster
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Video Demonstration

https://youtu.be/RrWGLfR4wfk

78

Differentiable Simulation of 
Soft Multi-body Systems

Yi-Ling Qiao*, Junbang Liang*, Vladlen Koltun, and Ming Lin*

*

79

https://youtu.be/RrWGLfR4wfk
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Motivation
● Self-powered soft robot in the Mariana Trench

80

Motivation
● A Compliant Hand Based on a Novel Pneumatic Actuator.

81
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Motivation
● Dynamic Grasping with a “Soft” Drone

82

OBJECTIVE

● Differentiable Physics Simulator to support different scenarios
○ Complex Contact
○ Embedded Skeleton
○ Joint, muscle, and pneumatic actuators

83
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Content

● Related Work

● Background

● Our Method
○ Articulation
○ Contact

● Results

84

Related Work

Liang et al. (NeurIPS 2019) 
cloth 85

Qiao et al. (ICML 2020) 
cloth + rigid body
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Related Work

Takahashi et al. (AAAI 2021) 
Fluids + rigid body

86

Qiao et al. (ICML 2021)
Articulated body

Related Work

87

Gradsim (2021)Difftaichi (2019)
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Related Work

88

DiffPD (2021) DiffAqua (2021)

Content

● Related Work

● Background

● Our Method
○ Articulation
○ Contact

● Results

89
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Background

90

[1] Li et al. (2018)[6] Ly et al. (2020)

Background
Projective dynamics

Implicit Euler :

Solve:

Local step:

Global step:

91
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Content

● Related Work

● Background

● Our Method
○ Articulation

○ Contact

● Results

92

Vertices on rigid bodies :

Linearize:

New global step:

Local step:

93

Method - rigid bodies
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Skeleton tree:

Jacobian:

Compute recursively:

94

Method - Articulated body

A is the local transformation matrix

P is the prefix product
S is the suffix product

95

Method - Articulated body
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Method - Articulated body

97

Method - Articulated body
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Method - Actuation - Joint Torque

Solve a linear system:

Torques can be added to K_r directly

99

Method - Actuation - Pneumatic
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Method - Actuation - Muscle

Content 

● Related Work

● Background

● Our Method
○ Articulation

○ Contact

● Results

101
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Method - Contact
● Dry friction contact model

○ Coulomb’s friction law
● Simplification

● Implementation
○ Normal momentum: cancelled out
○ Tangential momentum

■ Reverse impulse proportional to the 
normal momentum

■ No larger than the current momentum

102

Adjusted momentum

Original global step:

Convert to velocity space:

Contact handling:

103

Method - Contact

Depends on the relative velocities/momentums of collided vertices

Current momentum
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Method - Contact

● Friction law enforcement
○ The new impulse is added to the individual vertex
○ Iteratively resolved until converged

● Convergence
○ Not guaranteed
○ Depends on M and L if f and ξ are fixed

● Applicability to soft bodies
○ L too large compared to M
○ Unstable solve

104

Adjusted momentum Current momentum

Method - Contact
● Improvement

○ Move the diagonals of L to the left!
○ Asdf
○ When f and ξ are fixed, the improved method is guaranteed to converge

● Contact detection
○ Continuous collision detection
○ Grouped vertex-face collision handling

■ Contact forces need to be computed jointly

105
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Content

● Related Work

● Background

● Our Method
○ Checkpoint method
○ Adjoint derivation

○ Application with reinforcement learning

● Results

106

Results
● Implementation

● Ablation study

● Parameter estimation

● Motion Control

107
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Results - Implementation
● Differentiation: Autodiff + Eigen3 + Checkpointing scheme

108

Results - Ablation Study
● Skeleton

109
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Results - Ablation Study
● Contact

110

Parameter Estimation
● Scenario: suspension bridge

● Optimization variable: Young’s modulus and Poisson’s ratio

● Objective: Compliance under gravity

● Baseline: CMAES

111
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Parameter Estimation
● Scenario: arch bridge

● Optimization variable: Young’s modulus and Poisson’s ratio

● Objective: Compliance under gravity

● Baseline: CMAES

112

Motion Control - Skeleton
● Scenario: control a fish

● Optimization variable: joint torque

● Objective: reach a target place

● Baseline: CMAES

113
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Motion Control - Muscle
● Scenario: control an octopus

● Optimization variable: muscle actuation levels

● Objective: reach a target place

● Baseline: CMAES

114

Motion Control - Pneumatic
● Scenario: control a gripper

● Optimization variable: pneumatic activation

● Objective: reach a target place

● Baseline: CMAES/MBPO

115
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Video Demonstration

https://youtu.be/TPgFM5WxzaU

116

Questions?

https://gamma.umd.edu/researchdirections/virtualtryon/differentiablecloth

https://gamma.umd.edu/researchdirections/mlphysics/diffsim/

lin@cs.umd.edu

THANK YOU!!!
117

https://youtu.be/TPgFM5WxzaU
https://gamma.umd.edu/researchdirections/virtualtryon/differentiablecloth
https://gamma.umd.edu/researchdirections/mlphysics/diffsim/
mailto:lin@cs.umd.edu
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