CMSC 838B \& 498Z:
 Differentiable Programming

Tues/Thur 12:30pm - 1:45pm
IRB 4105 (T) \& IRB 5105 (R)
http://www.cs.umd.edu/class/fall2021/cmsc838b
Ming C. Lin
IRB 5162
lin@cs.umd.edu
http://www.cs.umd.edu/~lin
Office Hours: After Class or By Appointment

Why Automatic Differentiation (AD)?

To solve optimization problems using gradient methods we need to compute the gradients (derivatives) of the objective w.r.t. the parameters

- In neural nets we're talking about the gradients of the loss function w.r.t. the parameters $\boldsymbol{\theta}: \boldsymbol{\nabla} L=\frac{\partial L}{\partial \boldsymbol{\theta}}$
-AD is important - it's been suggested that "Differentiable programming" could be the term that ultimately replaces deep learning

Computing Derivatives

Three ways to compute derivatives -

- Symbolically differentiate the function
w.r.t. its parameters
- Problem: Static - can't "differentiate algorithms"
- Make estimates using finite differences
- Problems Problems: Numerical errors - will compound in deep nets
- Use Automatic Differentiation

What is Automatic Differentiation (AD)

- A method to get exact derivatives efficiently, by storing information as you go forward that you can reuse as you go backwards
- Takes code that computes a function and uses that to compute the derivative of that function
- The goal isn't to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.

Differentiation and Programming

The Chain Rule of Differentiation

Recall the chain rule for a variable/function z that depends on y which depends on x :

$$
\frac{d z}{d x}=\frac{d z d y}{d y} d x
$$

- In general, the chain rule can be expressed as:

$$
\frac{\partial w}{\partial t}=\sum_{i}^{N} \frac{\partial w}{\partial u_{i}} \frac{\partial u_{i}}{\partial t}=\frac{\partial w}{\partial u_{1}} \frac{\partial u_{1}}{\partial t}+\frac{\partial w}{\partial u_{2}} \frac{\partial u_{2}}{\partial t}+\cdots+\frac{\partial w}{\partial u_{N}} \frac{\partial u_{N}}{\partial t}
$$

where w is some output variable, and u_{i} denotes each input variable w depends on

Applying the Chain Rule

- Let's differentiate the previous expression w.r.t. some yet to be given variable t :

$$
\begin{aligned}
& \frac{\partial x}{\partial t}=? \\
& \frac{\partial y}{\partial t}=? \\
& \frac{\partial a}{\partial t}=x \frac{\partial y}{\partial t}+y \frac{\partial x}{\partial t} \\
& \frac{\partial b}{\partial t}=\cos (x) \frac{\partial t}{\partial t} \\
& \frac{\partial z}{\partial t}=\frac{\partial x}{\partial t}+\frac{\partial b}{\partial t}
\end{aligned}
$$

- If we substitute $t=x$ in the above we'll have an algorithm for computing $\mathrm{dz} / \mathrm{dx}$. To get dz/dy we'd just substitute $\mathrm{t}=\mathrm{y}$

Translating to code I

We could translate the previous expressions back into a program involving differential variables $\{d x, d y, \ldots\}$ which represent $d x / d t$, dy/dt, . . . respectively:

$$
\begin{aligned}
& d x=? \\
& d y=? \\
& d a=y^{*} d x+x^{*} d y \\
& d b=\cos (x)^{*} d x \\
& d z=d a+d b
\end{aligned}
$$

What happens to this program if we substitute $t=x$ into the math expression?

Name:

Translating to code II

$$
\begin{aligned}
& d x=1 \\
& d y=0 \\
& d a=y^{*} d x+x^{*} d y \\
& d b=\cos (x)^{*} d x \\
& d z=d a+d b
\end{aligned}
$$

The effect is remarkably simple: to compute dz/dx we just seed the algorithm with $\mathrm{dx}=1$ and $d y=0$.

Translating to code III

$$
\begin{aligned}
& d x=0 \\
& d y=1 \\
& d a=y^{*} d x+x^{*} d y \\
& d b=\cos (x)^{*} d x \\
& d z=d a+d b
\end{aligned}
$$

To compute dz/dy we just seed the algorithm with $\mathrm{dx}=0$ and $d y=1$

Making Rules

- We've successfully computed the gradients for a specific function, but the process was far from automatic
- We need to formalize a set of rules for translating a program that evaluates an expression into a program that evaluates its derivatives
- We have actually already discovered 3 of these rules:
$\mathrm{c}=\mathrm{a}+\mathrm{b} \Rightarrow \mathrm{dc}=\mathrm{da}+\mathrm{db}$
$\mathrm{c}=\mathrm{a} * \mathrm{~b} \Rightarrow \mathrm{dc}=\mathrm{b} * \mathrm{da}+\mathrm{a} * \mathrm{db}$
$c=\sin (\mathrm{a}) \quad=>\mathrm{dc}=\cos (\mathrm{a}) * \mathrm{da}$

More Rules

These initial rules:

$$
\begin{array}{lll}
\mathrm{c}=\mathrm{a}+\mathrm{b} & \Rightarrow & \mathrm{dc}=\mathrm{da}+\mathrm{db} \\
\mathrm{c}=\mathrm{a} * \mathrm{~b} & \Rightarrow & \mathrm{dc}=\mathrm{b} * \mathrm{da+}+\mathrm{a} * \mathrm{db} \\
\mathrm{c}=\sin (\mathrm{a}) & => & \mathrm{dc}=\cos (\mathrm{a})^{*} \mathrm{da}
\end{array}
$$

can easily be extended further using multivariable calculus:
$\mathrm{c}=\mathrm{a}-\mathrm{b} \quad \Rightarrow \quad \mathrm{dc}=\mathrm{da}-\mathrm{db}$
$\mathrm{c}=\mathrm{a} / \mathrm{b} \quad \quad \Rightarrow \quad \mathrm{dc}=\mathrm{da} / \mathrm{b}-\mathrm{a} * \mathrm{db} / \mathrm{b}^{* *} 2$
$\mathrm{c}=\cos (\mathrm{a}) \quad \Rightarrow \quad \mathrm{dc}=-\sin (\mathrm{a})^{*} \mathrm{da}$
$\mathrm{c}=\tan (\mathrm{a}) \quad \Rightarrow \quad \mathrm{dc}=\mathrm{da} / \cos (\mathrm{a})^{* *} 2$

Forward Mode AD

- To translate using the rules we simply replace each primitive operation in the original program by its differential analogue
- The order of computation remains unchanged: if a statement K is evaluated before another statement L , then the differential analogue of K is evaluated before the analogue statement of L
- This is Forward-mode Automatic Differentiation

Reversing the Chain Rule

- The chain rule is symmetric - this means we can turn the derivatives upside-down:

$$
\frac{\partial s}{\partial u}=\sum_{i}^{N} \frac{\partial w_{i}}{\partial u} \frac{\partial s}{\partial w_{i}}=\frac{\partial w_{1}}{\partial u} \frac{\partial s}{\partial w_{1}}+\frac{\partial w_{2}}{\partial u} \frac{\partial s}{\partial w_{2}}+\cdots+\frac{\partial w_{N}}{\partial u} \frac{\partial s}{\partial w_{N}}
$$

- In doing so, we have inverted the input-output role of the variables: u is some input variable, the wi 's are the output variables that depend on u. s is the yet-to-be-given variable.
- In this form, the chain rule can be applied repeatedly to every input variable u (akin to how in forward mode we repeatedly applied it to every w). Therefore, given some s we expect this form of the rule to give us a program to compute both ds/dx and ds/dy in one go. . .

Reversing the Chain Rule: Example

$$
\begin{array}{rlrl}
\frac{\partial s}{\partial u}=\sum_{i}^{N} \frac{\partial w_{i}}{\partial u} \frac{\partial s}{\partial w_{i}} & \frac{\partial s}{\partial z} & =? \\
x=? & \frac{\partial s}{\partial b} & =\frac{\partial z}{\partial b} \frac{\partial s}{\partial z}=\frac{\partial s}{\partial z} \\
y=? & \frac{\partial s}{\partial a} & =\frac{\partial z}{\partial a} \frac{\partial s}{\partial z}=\frac{\partial s}{\partial z} \\
a=x y & \frac{\partial s}{\partial y} & =\frac{\partial a}{\partial y} \frac{\partial s}{\partial a}=x \frac{\partial s}{\partial a} \\
b=\sin (x) & \frac{\partial s}{\partial x} & =\frac{\partial a}{\partial x} \frac{\partial s}{\partial a}+\frac{\partial b}{\partial x} \frac{\partial s}{\partial b} \\
z=a+b & & =y \frac{\partial s}{\partial a}+\cos (x) \frac{\partial s}{\partial b} \\
& =(y+\cos (x)) \frac{\partial s}{\partial z}
\end{array}
$$

Visualizing Dependencies

- Differentiating in reverse can be quite mind-bending: instead of asking what input variables an output depends on, we have to ask what output variables a given input variable can affect.
- We can see this visually by drawing a dependency graph of the expression:

Translating to Code

- Let's now translate our derivatives into code. As before we replace the derivatives (ds/dz, ds/db, . . .) with variables (gz, gb, ...) which we call adjoint variables:
$\mathrm{gz}=$?
$\mathrm{gb}=\mathrm{gz}$
$\mathrm{ga}=\mathrm{gz}$
gy $=x$ * $g a$
$g x=y * g a+\cos (x){ }^{*} g b$
- If we go back to the equations and substitute $s=z$ we would obtain the gradient in the last two equations. In the above program, this is equivalent to setting $\mathrm{gz}=1$.
- This means to get the both gradients $\mathrm{dz} / \mathrm{dx}$ and $\mathrm{dz} / \mathrm{dy}$ we only need to run the program once!

Limitations of Reverse Mode AD

- If we have multiple output variables, we'd have to run the program for each one (with different seeds on the output variables). For example:

$$
\left\{\begin{array}{l}
z=2 x+\sin x \\
v=4 x+\cos x
\end{array}\right.
$$

- We can't just interleave the derivative calculations (since they all appear to be in reverse). . . How can we make this automatic?

Implementing Reverse Mode AD

There are two ways to implement Reverse AD:

1. We can parse the original program and generate the adjoint program that calculates the derivatives:

- Potentially hard to do.
- Static, so can only be used to differentiate algorithms that have parameters predefined.
- But, efficient (lots of opportunities for optimisation)

2. We can make a dynamic implementation by constructing a graph that represents the original expression as the program runs.

Constructing an Expression Graph

The goal is to get something akin to the graph we saw earlier:

The "roots" of the graph are the independent variables x and y. Constructing these nodes is as simple as creating an object:

$$
\begin{aligned}
& \text { class Var: } \\
& \qquad \begin{array}{l}
\text { def_init_(self, value }): \\
\\
\text { self. value }=\text { value } \\
\text { self. children }=[]
\end{array} \\
& \begin{array}{l}
x=\operatorname{Var}(0.5) \\
y=\operatorname{Var}(4.2)
\end{array}
\end{aligned}
$$

Each Var node can have children which are the nodes that depend directly on that node. The children allow nodes to link together in a Directed Acyclic Graph.
M. C. Lin

Name:

Building Expressions

By default, nodes do not have any children. As expressions are created each expression u registers itself as a child of each of its dependencies wi together with its weight $\partial w i / \partial u$ which will be used to compute gradients:

```
class Var :
def __ mul__ ( self , other ):
z = Var ( self . value * other . value )
# weight = dz/ dself = other . value
self . children . append (( other . value , z))
# weight = dz/ dother = self . value other . children . append (C self .
value , z)) return z
.
# " a" is a new Var that is a child of both }x\mathrm{ and y
a=x**
```


Computing Gradients

Finally, to get the gradients we need to propagate the derivatives. To avoid unnecessarily traversing the tree multiple times we will cache the derivative of a node in an attribute grad_value:

```
class Var :
def __ init__ ( self ):
self . grad_ value = None
def grad ( self ):
if self . grad_ value is None :
# calculate derivative using chain rule
    self . grad_ value = sum ( weight * var . grad () for
weight var in self . children )
    return self . grad_ value
...
a. grad_ value = 1 . 0
print (" da / dx u= u {} ". format ( x. grad () )
```

Name:

AD in the PyTorch Autograd Package

- PyTorch's AD is remarkably similar to the one we've just built:
- it eschews the use of a tape
- it builds the computation graph as it runs (recording explicit Function objects as the children of Tensors rather than grouping everything into Var objects)
- it caches the gradients in the same way we do (in the grad attribute) - hence the need to call zero_grad() when recomputing the gradients of the same graph after a round of backprop.
- PyTorch does some clever memory management to work well in a reference-counted regime and aggressively frees values that are no longer needed.
- The backend is actually mostly written in C++, so its fast, and can be multi-threaded (avoids problems of the GIL)
- It allows easy "turning off" of gradient computations through requires_grad
- In-nlace_onerations which invalidate_data_needed to conmonte_derivatlver.Lin

