
Name:

1

M. C. Lin

CMSC 838B & 498Z:
Differentiable Programming

Tues/Thur 12:30pm – 1:45pm
IRB 4105 (T) & IRB 5105 (R)

http://www.cs.umd.edu/class/fall2021/cmsc838b

Ming C. Lin
IRB 5162

lin@cs.umd.edu
http://www.cs.umd.edu/~lin

Office Hours: After Class or By Appointment

M. C. Lin

Why Automatic Differentiation (AD)?

To solve optimization problems using gradient
methods we need to compute the gradients
(derivatives) of the objective w.r.t. the parameters

lIn neural nets we’re talking about the gradients of the
loss function w.r.t. the parameters θ: ∇ L = ∂L

∂θ

lAD is important - it’s been suggested that
“Differentiable programming” could be the term that
ultimately replaces deep learning

http://www.cs.umd.edu/class/fall2021/cmsc838b

Name:

2

Computing Derivatives

M. C. Lin

Three ways to compute derivatives –

l Symbolically differentiate the function
w.r.t. its parameters

– Problem: Static - can’t “differentiate algorithms”

l Make estimates using finite differences
– Problems Problems: Numerical errors - will

compound in deep nets

l Use Automatic Differentiation

M. C. Lin

What is Automatic Differentiation (AD)

l A method to get exact derivatives efficiently,
by storing information as you go forward that
you can reuse as you go backwards
– Takes code that computes a function and uses

that to compute the derivative of that function

– The goal isn’t to obtain closed-form solutions, but
to be able to write a program that efficiently
computes the derivatives.

Name:

3

Differentiation and Programming

Example (Math)
x =?
y =?
a = xy
b = sin(x)
z = a + b

Example (Code)

x = ?
y = ?
a = x * y
b = sin (x)
z = a + b

The Chain Rule of Differentiation

M. C. Lin

Recall the chain rule for a variable/function z
that depends on y which depends on x:

l In general, the chain rule can be expressed as:

where w is some output variable, and ui denotes
each input variable w depends on

dz = dz dy
dx dy dx

Name:

4

Applying the Chain Rule

M. C. Lin

l Let’s differentiate the previous expression w.r.t.
some yet to be given variable t:

l If we substitute t = x in the above we’ll have an
algorithm for computing dz/dx. To get dz/dy we’d just
substitute t = y

Expression

x =?

y =?
a = xy
b = sin(x)
z = a + b

Translating to code I

We could translate the previous expressions
back into a program involving differential
variables {dx, dy, ...} which represent dx/dt,
dy/dt, . . . respectively:

dx = ?
dy = ?
da = y * dx + x * dy
db = cos (x) * dx
dz = da + db

What happens to this program if we substitute
t = x into the math expression?

M. C. Lin

Name:

5

Translating to code II

dx = 1
dy = 0
da = y * dx + x * dy
db = cos (x) * dx
dz = da + db

M. C. Lin

The effect is remarkably simple:
to compute dz/dx we just seed
the algorithm with dx=1 and
dy=0.

Translating to code III

dx = 0
dy = 1
da = y * dx + x * dy
db = cos (x) * dx
dz = da + db

M. C. Lin

To compute dz/dy we just seed
the algorithm with dx=0 and
dy=1

Name:

6

Making Rules

M. C. Lin

• We’ve successfully computed the gradients for a specific
function, but the process was far from automatic

• We need to formalize a set of rules for translating a
program that evaluates an expression into a program that
evaluates its derivatives

• We have actually already discovered 3 of these rules:

More Rules

M. C. Lin

These initial rules:

c=a+b => dc=da+db
c=a*b => dc=b*da+a*db
c=sin(a) => dc=cos(a)*da

can easily be extended further using multivariable calculus:

c=a-b => dc=da -db
c=a/b => dc=da/b-a*db/b**2
c=cos(a) => dc=-sin(a)*da
c=tan(a) => dc=da/cos(a)**2

Name:

7

Forward Mode AD

M. C. Lin

• To translate using the rules we simply replace each
primitive operation in the original program by its
differential analogue

• The order of computation remains unchanged: if a
statement K is evaluated before another statement L, then
the differential analogue of K is evaluated before the
analogue statement of L

• This is Forward-mode Automatic Differentiation

Reversing the Chain Rule

M. C. Lin

l The chain rule is symmetric — this means we can
turn the derivatives upside-down:

l In doing so, we have inverted the input-output role of the
variables: u is some input variable, the wi ’s are the output
variables that depend on u. s is the yet-to-be-given variable.

l In this form, the chain rule can be applied repeatedly to
every input variable u (akin to how in forward mode we
repeatedly applied it to every w). Therefore, given some s we
expect this form of the rule to give us a program to compute
both ds/dx and ds/dy in one go. . .

Name:

8

Reversing the Chain Rule: Example

M. C. Lin

Visualizing Dependencies

M. C. Lin

• Differentiating in reverse can be quite mind-bending: instead of
asking what input variables an output depends on, we have to ask
what output variables a given input variable can affect.

• We can see this visually by drawing a dependency graph of the
expression:

Name:

9

Translating to Code

M. C. Lin

l Let’s now translate our derivatives into code. As before
we replace the derivatives (ds/dz, ds/db, . . .) with
variables (gz, gb, ...) which we call adjoint variables:

gz = ?

gb = gz
ga = gz

gy = x * ga
gx = y * ga + cos (x) * gb

l If we go back to the equations and substitute s = z we
would obtain the gradient in the last two equations. In
the above program, this is equivalent to setting gz = 1.

l This means to get the both gradients dz/dx and dz/dy
we only need to run the program once!

Limitations of Reverse Mode AD

M. C. Lin

l If we have multiple output variables, we’d have to
run the program for each one (with different seeds on
the output variables). For example:

l We can’t just interleave the derivative calculations
(since they all appear to be in reverse). . . How can
we make this automatic?

Name:

10

Implementing Reverse Mode AD

M. C. Lin

There are two ways to implement Reverse AD:

1. We can parse the original program and generate the
adjoint program that calculates the derivatives:

– Potentially hard to do.
– Static, so can only be used to differentiate algorithms that have

parameters predefined.
– But, efficient (lots of opportunities for optimisation)

2. We can make a dynamic implementation by
constructing a graph that represents the original
expression as the program runs.

Constructing an Expression Graph

M. C. Lin

The “roots” of the graph are the independent
variables x and y. Constructing these nodes is
as simple as creating an object:

class Var:

def __init__ (self , value):

self . value = value

self . children = []

...

...

x = Var (0.5)

y = Var (4.2)

Each Var node can have children which are
the nodes that depend directly on that node.
The children allow nodes to link together in a
Directed Acyclic Graph.

The goal is to get
something akin to the
graph we saw earlier:

Name:

11

Building Expressions

M. C. Lin

By default, nodes do not have any children. As expressions are created
each expression u registers itself as a child of each of its dependencies
wi together with its weight ∂wi/∂u which will be used to compute
gradients:

class Var :
...
def __ mul__ (self , other):
z = Var (self . value * other . value)

weight = dz/ dself = other . value
self . children . append ((other . value , z))

weight = dz/ dother = self . value other . children . append ((self .
value , z)) return z
...
...

" a" is a new Var that is a child of both x and y
a = x * y

Computing Gradients

M. C. Lin

Finally, to get the gradients we need to propagate the derivatives. To
avoid unnecessarily traversing the tree multiple times we will cache the
derivative of a node in an attribute grad_value:
class Var :
def __ init__ (self):
...
self . grad_ value = None

def grad (self):
if self . grad_ value is None :
calculate derivative using chain rule

self . grad_ value = sum (weight * var . grad () for
weight var in self . children)

return self . grad_ value
...
...
a. grad_ value = 1 . 0
print (" da / dx u= u {} ". format (x. grad ())

Name:

12

AD in the PyTorch Autograd Package

M. C. Lin

• PyTorch’s AD is remarkably similar to the one we’ve just built:
• it eschews the use of a tape
• it builds the computation graph as it runs (recording explicit

Function objects as the children of Tensors rather than
grouping everything into Var objects)

• it caches the gradients in the same way we do (in the grad
attribute) - hence the need to call zero_grad() when
recomputing the gradients of the same graph after a round of
backprop.

• PyTorch does some clever memory management to work well in a
reference-counted regime and aggressively frees values that are no
longer needed.

• The backend is actually mostly written in C++, so its fast, and can be
multi-threaded (avoids problems of the GIL)

• It allows easy “turning off” of gradient computations through
requires_grad

• In-place operations which invalidate data needed to compute derivatives
will cause runtime errors, as will variable aliasing...

