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Office Hours: After Class or By Appointment

M. C. Lin

Why Automatic Differentiation (AD)?

To solve optimization problems using gradient 
methods we need to compute the gradients 
(derivatives) of the objective w.r.t. the parameters

lIn neural nets we’re talking about the gradients of the 
loss  function w.r.t. the parameters θ: ∇ L = ∂L

∂θ

lAD is important - it’s been suggested that 
“Differentiable programming” could be the term that 
ultimately replaces deep  learning

http://www.cs.umd.edu/class/fall2021/cmsc838b
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Computing Derivatives

M. C. Lin

Three ways to compute derivatives –

l Symbolically differentiate the function 
w.r.t. its parameters

– Problem: Static - can’t “differentiate algorithms”

l Make estimates using finite differences
– Problems Problems: Numerical errors - will 

compound in deep nets

l Use Automatic Differentiation

M. C. Lin

What is Automatic Differentiation (AD)

l A method to get exact derivatives efficiently, 
by storing information as you go forward that 
you can reuse as you go backwards
– Takes code that computes a function and uses 

that to compute the derivative of that function

– The goal isn’t to obtain closed-form solutions, but 
to be able to write a program that efficiently 
computes the derivatives.
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Differentiation and Programming

Example (Math)
x =?
y =?
a =  xy
b = sin(x )
z =  a + b

Example (Code)

x = ?
y = ?
a = x * y  
b = sin (x)  
z = a +  b

The Chain Rule of Differentiation

M. C. Lin

Recall the chain rule for a variable/function z 
that depends on y which depends on x:

l In general, the chain rule can be expressed  as:

where w  is some  output variable, and ui denotes 
each input variable w depends on

dz =  dz dy
dx dy dx
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Applying the Chain Rule

M. C. Lin

l Let’s differentiate the previous expression w.r.t. 
some yet to be given variable t:

l If we substitute t = x in the above we’ll have an 
algorithm for computing dz/dx. To get dz/dy we’d just 
substitute t = y

Expression

x =?

y =?
a =  xy
b = sin(x )
z =  a + b

Translating to code I

We could translate the previous expressions 
back into a program involving differential 
variables {dx, dy, ...} which represent dx/dt, 
dy/dt, . . . respectively:

dx = ?
dy = ?
da = y * dx + x * dy
db = cos (x) * dx
dz = da + db

What happens to this program if we substitute   
t = x into the math expression?

M. C. Lin
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Translating to code II

dx = 1
dy = 0
da = y * dx + x * dy
db = cos (x) * dx
dz = da + db

M. C. Lin

The effect is remarkably simple:
to compute dz/dx we just seed
the algorithm with dx=1 and
dy=0.

Translating to code III

dx = 0
dy = 1
da = y * dx + x * dy
db = cos (x) * dx
dz = da + db

M. C. Lin

To compute dz/dy we just seed
the algorithm with dx=0 and
dy=1
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Making Rules

M. C. Lin

• We’ve successfully computed the gradients for a specific 
function, but the process was far from automatic

• We need to formalize a set of rules for translating a 
program that evaluates an expression into a program that 
evaluates its derivatives

• We have actually already discovered 3 of these rules:

More Rules

M. C. Lin

These initial rules:

c=a+b => dc=da+db
c=a*b => dc=b*da+a*db
c=sin(a) => dc=cos(a)*da

can easily be extended further using multivariable calculus:

c=a-b => dc=da -db
c=a/b => dc=da/b-a*db/b**2
c=cos(a) => dc=-sin(a)*da
c=tan(a) => dc=da/cos(a)**2
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Forward Mode AD

M. C. Lin

• To translate using the rules we simply replace each 
primitive operation in the original program by its 
differential analogue

• The order of computation remains unchanged: if a 
statement K is evaluated before another statement L, then 
the differential analogue of K is evaluated before the 
analogue statement of L

• This is Forward-mode Automatic Differentiation

Reversing the Chain Rule

M. C. Lin

l The chain rule is symmetric — this means we can 
turn the derivatives upside-down:

l In doing so, we have inverted the input-output role of the 
variables: u is some input variable, the wi ’s are the output 
variables that depend on u. s is the yet-to-be-given variable.

l In this form, the chain rule can be applied repeatedly to 
every input variable u (akin to how in forward mode we 
repeatedly applied it to every w). Therefore, given some s we 
expect this form of the rule to give us a program to compute 
both ds/dx and ds/dy in one go. . .
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Reversing the Chain Rule: Example

M. C. Lin

Visualizing Dependencies

M. C. Lin

• Differentiating in reverse can be quite mind-bending: instead of 
asking what input variables an output depends on, we have to ask 
what output variables a given input variable can affect.

• We can see this visually by drawing a dependency graph of the 
expression:
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Translating to Code

M. C. Lin

l Let’s now translate our derivatives into code. As before 
we replace the derivatives (ds/dz, ds/db, . . . ) with 
variables (gz, gb, ...) which we call adjoint variables:

gz = ?

gb = gz
ga = gz

gy = x * ga
gx = y * ga + cos (x) * gb

l If we go back to the equations and substitute s = z we 
would obtain the gradient in the last two equations. In 
the above program, this is equivalent to setting gz = 1.

l This means to get the both gradients dz/dx and dz/dy
we only need to run the program once!

Limitations of Reverse Mode AD

M. C. Lin

l If we have multiple output variables, we’d have to 
run the program for each one (with different seeds on 
the output variables). For example:

l We can’t just interleave the derivative calculations 
(since they all appear to be in reverse). . . How can 
we make this automatic?
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Implementing Reverse Mode AD

M. C. Lin

There are two ways to implement Reverse AD:

1. We can parse the original program and generate the 
adjoint program that calculates the derivatives:

– Potentially hard to do.
– Static, so can only be used to differentiate algorithms that have 

parameters predefined.
– But, efficient (lots of opportunities for optimisation)

2. We can make a dynamic implementation by 
constructing a graph that represents the original 
expression as the program runs.

Constructing an Expression Graph

M. C. Lin

The “roots” of the graph are the independent 
variables x and y. Constructing these nodes is 
as simple as creating an object:

class Var:

def __init__ (self , value ):

self . value = value

self . children = [ ]

...

...

x = Var (0.5)

y = Var (4.2)

Each Var node can have children which are 
the nodes that depend directly on that node. 
The children allow nodes to link together in a       
Directed Acyclic Graph.

The goal is to get
something akin to the
graph we saw earlier:
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Building Expressions

M. C. Lin

By default, nodes do not have any children. As expressions are created  
each expression u registers itself as a child of each of its dependencies 
wi  together with its weight ∂wi/∂u which will be  used  to compute  
gradients:

class Var :
...
def __ mul__ ( self , other ):
z = Var ( self . value * other . value )

# weight = dz/ dself = other . value
self . children . append (( other . value , z))

# weight = dz/ dother = self . value  other . children . append (( self . 
value , z))  return z
...
...

# " a" is a new Var that is a child of both x and y
a = x * y

Computing Gradients

M. C. Lin

Finally, to get the gradients we need to propagate the derivatives. To  
avoid unnecessarily traversing the tree multiple times we will cache the 
derivative of a  node in an attribute grad_value:
class Var :
def __ init__ ( self ):
...
self . grad_ value = None

def grad ( self ):
if self . grad_ value is None :
# calculate derivative using chain rule

self . grad_ value = sum ( weight * var . grad () for 
weight  var in self . children )

return self . grad_ value
...
...
a. grad_ value = 1 . 0
print (" da / dx u= u {} ". format ( x. grad () )



Name:

12

AD in the PyTorch Autograd Package

M. C. Lin

• PyTorch’s AD is remarkably similar to the one we’ve just built:
• it eschews  the use  of a tape
• it builds the computation graph as it runs (recording explicit 

Function  objects as the children of Tensors rather than 
grouping everything  into Var objects)

• it caches the gradients in the same way we do (in the grad 
attribute) - hence the need to call zero_grad() when 
recomputing the gradients  of the same  graph after a  round of 
backprop.

• PyTorch does some clever memory management to work well in a
reference-counted regime and aggressively frees values that are no
longer needed.

• The backend is actually mostly written in C++, so its fast, and can  be  
multi-threaded (avoids problems of the GIL)

• It allows easy “turning off” of gradient computations through
requires_grad

• In-place operations which invalidate data needed to compute derivatives 
will cause  runtime errors, as  will variable  aliasing...


