CMSC 838B & 498Z: Differentiable Programming

Tues/Thur 12:30pm – 1:45pm
IRB 4105 (T) & IRB 5105 (R)
http://www.cs.umd.edu/class/fall2021/cmsc838b

Ming C. Lin
IRB 5162
lin@cs.umd.edu
http://www.cs.umd.edu/~lin
Office Hours: After Class or By Appointment

Why Automatic Differentiation (AD)?

To solve optimization problems using gradient methods we need to compute the gradients (derivatives) of the objective w.r.t. the parameters

- In neural nets we’re talking about the gradients of the loss function w.r.t. the parameters \(\theta \): \(\nabla L = \frac{\partial L}{\partial \theta} \)

- AD is important - it’s been suggested that “Differentiable programming” could be the term that ultimately replaces deep learning

M. C. Lin
Computing Derivatives

Three ways to compute derivatives –

● Symbolically differentiate the function w.r.t. its parameters
 – Problem: Static - can’t “differentiate algorithms”

● Make estimates using finite differences
 – Problems: Numerical errors - will compound in deep nets

● Use Automatic Differentiation

What is Automatic Differentiation (AD)

● A method to get exact derivatives efficiently, by storing information as you go forward that you can reuse as you go backwards
 – Takes code that computes a function and uses that to compute the derivative of that function
 – The goal isn't to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.
Differentiation and Programming

Example (Math)

\[x = ? \]
\[y = ? \]
\[a = xy \]
\[b = \sin(x) \]
\[z = a + b \]

Example (Code)

\[x = ? \]
\[y = ? \]
\[a = x * y \]
\[b = \sin(x) \]
\[z = a + b \]

The Chain Rule of Differentiation

Recall the chain rule for a variable/function \(z \) that depends on \(y \) which depends on \(x \):

\[
\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}
\]

- In general, the chain rule can be expressed as:

\[
\frac{\partial w}{\partial t} = \sum_{i=1}^{N} \frac{\partial w}{\partial u_i} \frac{\partial u_i}{\partial t} = \frac{\partial w}{\partial u_1} \frac{\partial u_1}{\partial t} + \frac{\partial w}{\partial u_2} \frac{\partial u_2}{\partial t} + \cdots + \frac{\partial w}{\partial u_N} \frac{\partial u_N}{\partial t}
\]

where \(w \) is some output variable, and \(u_i \) denotes each input variable \(w \) depends on.

M. C. Lin
Applying the Chain Rule

- Let's differentiate the previous expression w.r.t. some yet to be given variable t:

<table>
<thead>
<tr>
<th>Expression</th>
<th>(\frac{\partial x}{\partial t} = ?)</th>
<th>(\frac{\partial y}{\partial t} = ?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = ?)</td>
<td>(a = x y)</td>
<td>(b = \sin(x))</td>
</tr>
<tr>
<td>(y = ?)</td>
<td>(z = a + b)</td>
<td></td>
</tr>
</tbody>
</table>

- If we substitute \(t = x \) in the above we'll have an algorithm for computing \(dz/dx \). To get \(dz/dy \) we'd just substitute \(t = y \).

Translating to code I

We could translate the previous expressions back into a program involving differential variables \(\{dx, dy, \ldots\} \) which represent \(dx/dt, dy/dt, \ldots \) respectively:

- \(dx = ? \)
- \(dy = ? \)
- \(da = y * dx + x * dy \)
- \(db = \cos(x) * dx \)
- \(dz = da + db \)

What happens to this program if we substitute \(t = x \) into the math expression?
Translating to code II

\[
\begin{align*}
\text{dx} &= 1 \\
\text{dy} &= 0 \\
\text{da} &= y \times \text{dx} + x \times \text{dy} \\
\text{db} &= \cos(x) \times \text{dx} \\
\text{dz} &= \text{da} + \text{db}
\end{align*}
\]

The effect is remarkably simple: to compute \(\frac{dz}{dx} \) we just seed the algorithm with \(\text{dx}=1 \) and \(\text{dy}=0 \).

Translating to code III

\[
\begin{align*}
\text{dx} &= 0 \\
\text{dy} &= 1 \\
\text{da} &= y \times \text{dx} + x \times \text{dy} \\
\text{db} &= \cos(x) \times \text{dx} \\
\text{dz} &= \text{da} + \text{db}
\end{align*}
\]

To compute \(\frac{dz}{dy} \) we just seed the algorithm with \(\text{dx}=0 \) and \(\text{dy}=1 \).
Making Rules

- We’ve successfully computed the gradients for a specific function, but the process was far from automatic.
- We need to formalize a set of rules for translating a program that evaluates an expression into a program that evaluates its derivatives.
- We have actually already discovered 3 of these rules:

\[\begin{align*}
 c &= a + b & \Rightarrow & & dc = da + db \\
 c &= a \times b & \Rightarrow & & dc = b \times da + a \times db \\
 c &= \sin(a) & \Rightarrow & & dc = \cos(a) \times da \\
\end{align*} \]

More Rules

These initial rules:

- \[c = a + b \quad \Rightarrow \quad dc = da + db \]
- \[c = a \times b \quad \Rightarrow \quad dc = b \times da + a \times db \]
- \[c = \sin(a) \quad \Rightarrow \quad dc = \cos(a) \times da \]

Can easily be extended further using multivariable calculus:

- \[c = a - b \quad \Rightarrow \quad dc = da - db \]
- \[c = a/b \quad \Rightarrow \quad dc = da/b - a \times db/b^2 \]
- \[c = \cos(a) \quad \Rightarrow \quad dc = -\sin(a) \times da \]
- \[c = \tan(a) \quad \Rightarrow \quad dc = da/\cos(a)^2 \]
Forward Mode AD

- To translate using the rules we simply replace each primitive operation in the original program by its differential analogue.

- The order of computation remains unchanged: if a statement K is evaluated before another statement L, then the differential analogue of K is evaluated before the analogue statement of L.

- This is **Forward-mode Automatic Differentiation**

Reversing the Chain Rule

- The chain rule is symmetric — this means we can turn the derivatives upside-down:

\[
\frac{\partial s}{\partial u} = \sum_{i}^{N} \frac{\partial w_i}{\partial u} \frac{\partial s}{\partial w_i} = \frac{\partial w_1}{\partial u} \frac{\partial s}{\partial w_1} + \frac{\partial w_2}{\partial u} \frac{\partial s}{\partial w_2} + \cdots + \frac{\partial w_N}{\partial u} \frac{\partial s}{\partial w_N}
\]

- In doing so, we have inverted the input-output role of the variables: \(u \) is some input variable, the \(w_i \)'s are the output variables that depend on \(u \). \(s \) is the yet-to-be-given variable.

- In this form, the chain rule can be applied repeatedly to every input variable \(u \) (akin to how in forward mode we repeatedly applied it to every \(w \)). Therefore, given some \(s \) we expect this form of the rule to give us a program to compute both \(ds/dx \) and \(ds/dy \) in one go.

M. C. Lin
Reversing the Chain Rule: Example

\[\frac{\partial s}{\partial u} = \sum \frac{\partial w_i}{\partial u} \frac{\partial s}{\partial w_i} \]

\[\frac{\partial s}{\partial z} = ? \]

\[\frac{\partial s}{\partial b} = \frac{\partial z}{\partial b} \frac{\partial s}{\partial z} = \frac{\partial s}{\partial z} \]

\[\frac{\partial s}{\partial a} = \frac{\partial z}{\partial a} \frac{\partial s}{\partial z} = \frac{\partial s}{\partial z} \]

\[x = ? \]
\[y = ? \]
\[a = xy \]
\[b = \sin(x) \]
\[z = a + b \]

Visualizing Dependencies

- Differentiating in reverse can be quite mind-bending: instead of asking what input variables an output depends on, we have to ask what output variables a given input variable can affect.

- We can see this visually by drawing a dependency graph of the expression:

```
   x
   / \    y
  /   \   .
 sin  \   
 a   \   
 b +   
   z
```
Translating to Code

- Let’s now translate our derivatives into code. As before we replace the derivatives (ds/dz, ds/db, . . .) with variables (gz, gb, ...) which we call adjoint variables:

 \[
 \begin{align*}
 gz &= \text{?} \\
 gb &= gz \\
 ga &= gz \\
 gy &= x \cdot ga \\
 gx &= y \cdot ga + \cos(x) \cdot gb
 \end{align*}
 \]

- If we go back to the equations and substitute s = z we would obtain the gradient in the last two equations. In the above program, this is equivalent to setting gz = 1.

- This means to get the both gradients dz/dx and dz/dy we only need to run the program once!

Limitations of Reverse Mode AD

- If we have multiple output variables, we’d have to run the program for each one (with different seeds on the output variables). For example:

 \[
 \begin{align*}
 z &= 2x + \sin x \\
 v &= 4x + \cos x
 \end{align*}
 \]

- We can’t just interleave the derivative calculations (since they all appear to be in reverse). . . How can we make this automatic?
Implementing Reverse Mode AD

There are two ways to implement Reverse AD:

1. We can parse the original program and generate the adjoint program that calculates the derivatives:
 - Potentially hard to do.
 - Static, so can only be used to differentiate algorithms that have parameters predefined.
 - But, efficient (lots of opportunities for optimisation)

2. We can make a dynamic implementation by constructing a graph that represents the original expression as the program runs.

Constructing an Expression Graph

The "roots" of the graph are the independent variables x and y. Constructing these nodes is as simple as creating an object:

```python
class Var:
    def __init__(self, value):
        self.value = value
        self.children = []

x = Var(0.5)
y = Var(4.2)
```

Each Var node can have children which are the nodes that depend directly on that node. The children allow nodes to link together in a Directed Acyclic Graph.
Building Expressions

By default, nodes do not have any children. As expressions are created, each expression \(u \) registers itself as a child of each of its dependencies \(w \) together with its weight \(\frac{\partial w}{\partial u} \) which will be used to compute gradients:

```python
class Var :
    ...
    def __mul__( self , other ) :
        z = Var ( self . value * other . value )
        # weight = dz/ dself = other . value
        self . children . append (( other . value , z))
        # weight = dz/ dother = self . value
        other . children . append (( self . value , z))
        return z
    ...  

# " a" is a new Var that is a child of both x and y
a = x * y
```

Computing Gradients

Finally, to get the gradients we need to propagate the derivatives. To avoid unnecessarily traversing the tree multiple times we will cache the derivative of a node in an attribute `grad_value`:

```python
class Var :
    def __init__ ( self ) :
        ...
        self . grad_value = None

    def grad ( self ) :
        if self . grad_value is None :
            # calculate derivative using chain rule
            self . grad_value = sum ( weight * var . grad () for weight , var in self . children )
            return self . grad_value
        ...

a . grad_value = 1 . 0
print ("da / dx u= u {} "). format ( x . grad () )
```
AD in the PyTorch Autograd Package

- PyTorch's AD is remarkably similar to the one we've just built:
 - it eschews the use of a tape
 - it builds the computation graph as it runs (recording explicit `Function` objects as the children of Tensors rather than grouping everything into `Var` objects)
 - it caches the gradients in the same way we do (in the `grad` attribute) - hence the need to call `zero_grad()` when recomputing the gradients of the same graph after a round of backprop.
- PyTorch does some clever memory management to work well in a reference-counted regime and aggressively frees values that are no longer needed.
- The backend is actually mostly written in C++, so it's fast, and can be multi-threaded (avoids problems of the GIL)
- It allows easy "turning off" of gradient computations through `requires_grad`
- In-place operations which invalidate data needed to compute derivatives...