
Name:

1

M. C. Lin

CMSC 838B & 498Z:
Differentiable Programming

Tues/Thur 12:30pm – 1:45pm
IRB 4105 (T) & IRB 5105 (R)

http://www.cs.umd.edu/class/fall2021/cmsc838b

Ming C. Lin
IRB 5162

lin@cs.umd.edu
http://www.cs.umd.edu/~lin

Office Hours: After Class or By Appointment

M. C. Lin

Optimization by Following Gradients

l Fundamentally, we’re interested in machines that
we train by optimizing parameters

l How do we select these parameters?

l In differentiable programming, we often define an
objective function that we minimize (or maximize)
with respect to (w.r.t.) these parameters
l That is, we’re looking for points at which the

gradient of the objective function is zero
w.r.t the parameters

http://www.cs.umd.edu/class/fall2021/cmsc838b

Name:

2

M. C. Lin

Optimization by Following Gradients

l Gradient based optimization is a big field.
– First order methods, second order methods,

subgradient methods...
l With Differentiable Programming, we’re primarily
interested in the first-order methods1.
– Primarily using variants of gradient descent: a function

F (x) has a minima2 (or a saddle-point) at a point x = a
where a is given by applying an+1 = an −α∇F (an) until
convergence from some initial point a0

1Second-order gradient optimizers are potentially better,
but for systems with many variables are currently
impractical as they require computing the Hessian.
2not necessarily global or unique

M. C. Lin

What Are Gradients?

l The derivative in 1D
l The gradient of a straight line is

l For an arbitrary real-valued function, f(a), we can
approximate the derivative, f’(a) using the gradient of
the secant line defined by (a, f (a)) and a point a small
distance, h, away (a + h, f (a + h)): f’(a) ≈

l This expression is ‘Newton’s Difference Quotient’

l As h becomes smaller, the approximated derivative
becomes more accurate. Take the limit as h →0, we have

∆y
∆X

f(a+h)−f(a)
h

Name:

3

M. C. Lin

What Are Gradients?

The derivative of y = x 2 from first principles

M. C. Lin

Numerical Approximation of Derivatives

l For numerical computation of derivatives it is
better to use a “centralized” definition:

l The bit inside the limit is known as the
”symmetric difference quotient”
l For small values of h, this has less error than

the standard one-sided difference quotient

Name:

4

M. C. Lin

What Are Gradients?

l If you are going to use difference quotients to
estimate derivatives you need to be aware of potential
rounding errors due to floating point representations

l Calculating derivatives this way using less than 64-
bit precision is rarely going to be useful. (Numbers
are not represented exactly, so even if h is
represented exactly, x +h will probably not be)
l You need to pick an appropriate h – too small and
the subtraction will have a large rounding error!

M. C. Lin

What Are Gradients?

l Deep learning is all about optimizing deeper
functions; functions that are compositions of other
functions:

e.g. z = f ◦ g (x) = f (g (x))

l The chain rule of calculus tells us how to
differentiate compositions of functions:

dz = dz dy
dx dy dx

Name:

5

M. C. Lin

What Are Gradients?

Or, derive from the first principle:

M. C. Lin

Vector Functions

l For a vector function, y (t), this can be split
into its constituent coordinate functions:

y (t) = (y1(t), . . . , yn(t))
l The derivative is a (tangent) vector:
y I(t) = (y1I (t), . . . , ynI (t)), which consists

of the derivatives of the coordinate functions
l Equivalently, if the limit exists, then

Name:

6

M. C. Lin

Functions of Multiple Variables:
Partial Differentiation

l What if the function we’re trying to deal with has multiple
variables3 (e.g. f (x, y) = x 2 + xy + y 2)?

– This expression has a pair of partial derivatives, = 2x + y and = x + 2y ,
computed by differentiating with respect to each variable x and y whilst

holding the other(s) constant.

l Generally partial derivative of a function f (x1, . . . , xn) at a

point (a1, . . . , an) is given by:

l The vector of partial derivatives of a scalar-value multivariate

function, f (x1, . . . , xn) at a point (a1, . . . , an), can be arranged

into a vector, gradient of f @ a.

l For a vector-valued multivariate functions, the partial derivatives
form a matrix is called the Jacobian

M. C. Lin

Functions of Vectors and Matrices:
Partial Differentiation

For the kinds of functions (and programs) that we’ll look
at optimizing in this course have a number of typical
properties:

– They are scalar-valued
– We’ll look at programs with multiple losses, but

ultimately we can just consider optimizing with respect
to the sum of the losses.

– They involve multiple variables, which are often
wrapped up in the form of vectors or matrices, and
more generally tensors.

– How will we find the gradients of these

Name:

7

M. C. Lin

Chain Rule for Vectors

l Suppose that x ∈ Rm, y ∈ Rn, g maps from Rm to Rn

and f maps from Rn to R.
l If y = g (x) and z = f (y), then

l Equivalently, in vector notation:

here ∂y is the nxm Jacobian matrixs
∂x

M. C. Lin

Chain Rule for Tensors

l Conceptually, the simplest way to think about gradients of
tensors is to imagine flattening them into vectors, computing
the vector-valued gradient and then reshaping the gradient
back into a tensor.

l In this way we’re still just multiplying Jacobians by gradients.
More formally, consider gradient of a scalar z with respect to
a tensor X to be denoted as ∇Xz .

l Indices into X now have multiple coordinates, but we can
generalize by using a single variable i to represent the
complete tuple of indices.

l For all index tuples i, (∇Xz)i gives

l Thus, if Y = g (X) and z = f (Y) then

Name:

8

M. C. Lin

Example: ∇W f (XW)

Let D = XW where the rows of X ∈ Rn×m

contain some fixed features, and W ∈ Rm×h

is a matrix of weights.

Also let L = f (D) be some scalar function of
D that we wish to minimize

What are the derivatives of L with respect to
the weights W ?

M. C. Lin

Example: ∇W f (XW)

Name:

9

M. C. Lin

Example: ∇W f (XW)

Putting every together, we have:

As we’re summing over multiplications of scalars, we can
change the order:

and note that the sum over i is doing a dot product with
row u and column v if we transpose Xiu to Xu

T
i :

We can then see that if we want this for all values of W
it simply generalizes to:

M. C. Lin

What Does a Gradient Do?

l In your early calculus lessons you likely had it
hammered into you that gradients represent rates of
change of functions.
l This is of course totally true...
l But, it isn’t a particularly useful way to think about the
gradients of a loss with respect to the weights of a
parameterized function.
l The gradient of the loss with respect to a parameter
tells you how much the loss will change with a small
perturbation to that parameter.

Name:

10

M. C. Lin

Singular Value Decomposition

l Let’s now change direction and look at using some
differentiation and Singular Value Decomposition
(SVD).
l For complex A :

A = UΣV∗

where V∗ is the conjugate transpose of V

For real A:

A = UΣV T

M. C. Lin

Singular Value Decomposition

l SVD has many uses:
Computing the Eigendecomposition:

Eigenvectors of AAT are columns of U, Eigenvectors of ATA are
columns of V ,
and the non-zero values of Σ are the square roots of the non-zero
eigenvalues of both AAT and ATA.

l Dimensionality reduction
...use to compute PCA

l Computing the Moore-Penrose Pseudoinverse
for real A: A+ = V Σ+UT where Σ+ is formed by taking the reciprocal of
every non-zero diagonal element and transposing the result.

l Low-rank approximation and matrix completion
if you take the ρ columns of U, and the ρ rows of V T corresponding to
the ρ largest singular values, you can form the matrix Aρ = UρΣρVρ

T

which will be the best rank-ρ approximation of the original A in terms
of the Frobenius norm.

Name:

11

M. C. Lin

Computing SVD using Gradients

l There are many standard ways of computing the SVD:
– e.g. ‘Power iteration’, or ‘Arnoldi iteration’ or ‘Lanczos algorithm’

coupled with the ‘Gram-Schmidt process’ for
orthonormalization

l but, these don’t necessarily scale up to really big
problems
– e.g. computing the SVD of a sparse matrix with 17770 rows, 480189

columns and 100480507 non-zero entries!
– this corresponds to the data provided by Netflix when they

launched the Netflix Challenge in 2006.
l OK, so what can you do?

– The ‘Simon Funk’ solution: realise that there is a really simple (and
quick) way to compute the SVD by following gradients...

M. C. Lin

Computing SVD using Gradients

l One of the definitions of rank- SVD of a matrix A is that it
minimises reconstruction error in terms of the Frobenius norm

l Without loss of generality we can write SVD as a 2-matrix
decomposition A = ˆUˆVT by rolling in the square roots of
to both ˆU and ˆV :

Then we can define the decomposition as finding:

Name:

12

M. C. Lin

Deriving a gradient-descent solution to SVD

M. C. Lin

Deriving a gradient-descent solution to SVD

