
Name:

1

M. C. Lin

CMSC 838B & 498Z:
Differentiable Programming

Tues/Thur 12:30pm – 1:45pm
IRB 4105 (T) & IRB 5105 (R)

http://www.cs.umd.edu/class/fall2021/cmsc838b

Ming C. Lin
IRB 5162

lin@cs.umd.edu
http://www.cs.umd.edu/~lin

Office Hours: After Class or By Appointment

M. C. Lin

Optimization

To solve optimization problems using gradient
methods we need to compute the gradients
(derivatives) of the objective w.r.t. the parameters

lIn neural nets we’re talking about the gradients of the
loss function w.r.t. the parameters θ: ∇ L = ∂L

∂θ

l3 ways to compute derivatives: Symbolic, Finite
Difference, and Automatic Differentiation

http://www.cs.umd.edu/class/fall2021/cmsc838b

Name:

2

M. C. Lin

Automatic Differentiation (AD)

l A method to get exact derivatives efficiently,
by storing information as you go forward that
you can reuse as you go backwards
– Takes code that computes a function and uses

that to compute the derivative of that function

– The goal isn’t to obtain closed-form solutions, but
to be able to write a program that efficiently
computes the derivatives.

Differentiation and Programming

Example (Math)
x =?
y =?
a = xy
b = sin(x)
z = a + b

Example (code)
(Code)
x = ?
y = ?
a = x * y
b = sin (x)
z = a + b

Name:

3

Forward Mode AD

M. C. Lin

• To translate using the rules we simply replace each
primitive operation in the original program by its
differential analogue

• The order of computation remains unchanged: if a
statement K is evaluated before another statement L, then
the differential analogue of K is evaluated before the
analogue statement of L

• This is Forward-mode Automatic Differentiation

Backward AD:
Reversing the Chain Rule

M. C. Lin

Name:

4

Visualizing Dependencies

M. C. Lin

• Differentiating in reverse can be quite mind-bending: instead of
asking what input variables an output depends on, we have to ask
what output variables a given input variable can affect.

• We can see this visually by drawing a dependency graph of the
expression:

Gradient Descent

l Define total loss as for
some loss function l, dataset D, and model g, with learnable
parameters Ɵ

l Define how many passes over the data to make (each one
known as an Epoch)

l Define a learning rate ƞ
Gradient Descent updates the parameters Ɵ by moving them in
the direction of the negative gradient with respect to the total
loss L by the learning rate ƞ multiplied by the gradient:

for each Epoch:

M. C. Lin

Name:

5

Gradient Descent

l Gradient Descent has good statistical properties
(very low variance)

l But is very data inefficient (particularly when
data has many similarities)

l Doesn’t scale to effectively infinite data (e.g. with
data augmentation)

M. C. Lin

Stochastic Gradient Descent (SGD)

l Define loss function l, dataset D, and model g, with learnable
parameters Ɵ

l Define how many passes over the data to make (each one
known as an Epoch)

l Define a learning rate ƞ
Stochastic Gradient Descent (SGD) updates the parameters
Ɵ by moving them in the direction of the negative gradient with
respect to the loss of a single item l by the learning rate ƞ,
multiplied by the gradient:

for each Epoch:

M. C. Lin

Name:

6

Stochastic Gradient Descent (SGD)

l Stochastic Gradient Descent has poor statistical
properties (very high variance)

l Why works?
– We don’t need to check all the training examples to get

an idea about the direction of decreasing slope. By
analyzing only 1 example at a time and following its
slope (gradient), we can reach a point very close to the
actual minimum

l Not computationally efficient enough (poor
utilization of resources w.r.t. vectorization)

M. C. Lin

Mini-Batch Stochastic Gradient Descent

l Define a batch size b
l Define batch loss as for

some loss function l & model g with learnable parameters Ɵ.
Db is a subset of dataset D of cardinality b

l Define how many passes (Epochs) over the data to make
l Define a learning rate ƞ
Mini-batch Stochastic Gradient Descent (SGD) updates parameters Ɵ
by moving them in the direction of the negative gradient with respect to
the loss of a mini-batch Db, L b by the learning rate ƞ, multiplied by the
gradient:

M. C. Lin

Name:

7

Mini-Batch Stochastic Gradient Descent

l Mini-batch Stochastic Gradient Descent has
reasonable statistical properties (much lower variance
than SGD)
l Allows for computationally efficiency (good utilization
of resources)
l Ultimately we would normally want to make our

batches as big as possible for lower variance
gradient estimates, but:

– Must still fit in RAM (e.g. on the GPU)
– Must be able to maintain throughput (e.g. pre-processing

on the CPU; data transfer time)

M. C. Lin

Learning Rates

l Choice of learning rate is extremely important
l But we have to reason about the ‘loss landscape’

– Most convergence analysis of optimization algorithms assumes
a convex loss landscape

• Easy to reason about
• Can be shown that (S)GD will converge to the optimal solution for

a variety of learning rates
• Can give insights into potential problems in the non-convex case

– Deep Learning is highly non-convex
• Many local minima
• Plateaus
• Saddle points
• Symmetries (permutation, etc)
• Certainly no single global minima

M. C. Lin

Name:

8

Accelerated Gradient Methods

l Accelerated gradient methods use a leaky average
of the gradient, rather than the instantaneous
gradient estimate at each time step

l A physical analogy would be one of the momentum
a ball picks up rolling down a hill...

l This helps address the *GD failure modes, but also
helps avoid getting stuck in local minima

M. C. Lin

Momentum I

l It’s common for the ‘leaky’ average (the
‘velocity’, vt) to be a weighted average of the
instantaneous gradient gt and the past velocity1:

where is the ‘momentum’

1There are quite a few variants – here the PyTorch variant

M. C. Lin

Name:

9

Momentum II

l The momentum method allows to accumulate
velocity in directions of low curvature that
persist across multiple iterations

l This leads to accelerated progress in low
curvature directions compared to gradient
descent

M. C. Lin

MB-SGD with Momentum

l Learning with momentum on iteration t (batch at
t denoted by b(t)) is given by:

is a good choice for the momentum
parameter

M. C. Lin

Name:

10

SGD with Momentum - potentially
better convex convergence

Learning Rates

l In practice you want to decay your learning rate
over time

l Smaller steps will help get closer to the minima
l But don’t do it too early, else might get stuck

l Something of an art form!

M. C. Lin

Name:

11

Reduce LR on Plateau

l Common Heuristic approach:
– if the loss hasn’t improved (within some tolerance)

for k epochs then drop the LR by a factor of 10
l Remarkably powerful!

M. C. Lin

Cyclic Learning Rates

l Worried about getting stuck in a non-optimal local
minima?
l Cycle the learning rate up and down (possibly
annealed), with a different LR on each batch

l See https://arxiv.org/abs/1506.01186

M. C. Lin

Name:

12

More Advanced Optimizers

l Adagrad
– Decrease learning rate dynamically per weight.
– Squared magnitude of the gradient (2nd moment) used to adjust how

quickly progress is made - weights with large gradients are compensated
with a smaller learning rate.

– Particularly effective for sparse features.

l RMSProp
– Modify Adagrad to decouple learning rate from gradient magnitude scaling
– Incorporates leaky averaging of squared gradient magnitudes
– LR would typically follow a predefined schedule

l Adam
– Essentially takes all the best ideas from RMSProp and SDG+Momentum
– Bias corrected momentum and second moment estimation
– It might still diverge (or be non optimal, even in convex settings)...
– LR is still a hyperparameter (you might still schedule) M. C. Lin

Take-away Messages

l The loss landscape of a deep network is complex to
understand (and is far from convex)
l If you’re in a hurry to get results use Adam
l If you have time, then use SGD (with momentum)
and work on tuning learning rates
l If you’re implementing something from a paper,
then follow what they did!

For more about Numerical Optimization: CMSC 764

M. C. Lin

