Check the latex file and find out how macros are used to display basic quantum objects!

Quantum States. The state space \mathcal{A} of m-qubit is the complex Euclidean space $\mathbb{C}^{2^{m}}$. An m-qubit quantum state is represented by a density operator ρ, i.e., a positive semidefinite operator over \mathcal{A} with trace 1. The set of all quantum states in \mathcal{A} is denoted by $\operatorname{Dens}(\mathcal{A})$.

Let $\mathrm{L}(\mathcal{A})$ denote the set of all linear operators on space \mathcal{A}. The Hilbert-Schmidt inner product on $\mathrm{L}(\mathcal{A})$ is defined by $\langle X, Y\rangle=\operatorname{tr}\left(X^{*} Y\right)$, for all $X, Y \in \mathrm{~L}(\mathcal{A})$, where X^{*} is the adjoint conjugate of X. Let id \mathcal{X} denote the identity operator over \mathcal{X}, which might be omitted from the subscript if it is clear in the context. An operator $U \in \mathrm{~L}(\mathcal{X})$ is a unitary if $U U^{*}=U^{*} U=\mathrm{id}_{\mathcal{X}}$. The set unitary operations over \mathcal{X} is denoted by $U(\mathcal{X})$.

For a multi-partite state, e.g. $\rho_{A B C} \in \operatorname{Dens}(\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C})$, its reduced state on some subsystem(s) is represented by the same state with the corresponding subscript(s). For example, the reduced state on \mathcal{A} system of $\rho_{A B C}$ is $\rho_{A}=\operatorname{tr}_{\mathcal{B C}}\left(\rho_{A B C}\right)$, and $\rho_{A B}=\operatorname{tr}_{\mathcal{C}}\left(\rho_{A B C}\right)$. When all subscript letters are omitted, the notation represents the original state (e.g., $\rho=\rho_{A B E}$).

A classical-quantum-, or cq-state $\rho \in \operatorname{Dens}(\mathcal{A} \otimes \mathcal{B})$ indicates that the \mathcal{A} subsystem is classical and \mathcal{B} is quantum. Likewise for ccq-, etc., states. We use lower case letters to denote specific values assignment to the classical part of a state. For example, any cq-state $\rho_{A B}=\sum_{a} p_{a}|a\rangle\langle a| \otimes \rho_{B}^{a}$ in which $p_{a}=\operatorname{Pr}[A=a]$ and ρ_{B}^{a} is a normalized state.

Distance Measures. For any $X \in \mathrm{~L}(\mathcal{A})$ with singular values $\sigma_{1}, \cdots, \sigma_{d}$, where $d=\operatorname{dim}(\mathcal{A})$, the trace norm of \mathcal{A} is $\|X\|_{\mathrm{tr}}=\sum_{i=1}^{d} \sigma_{i}$.

The trace distance between two quantum states ρ_{0} and ρ_{1} is defined to be

$$
\left|\rho_{0}-\rho_{1}\right|_{\mathrm{tr}} \stackrel{\text { def }}{=} \frac{1}{2}\left\|\rho_{0}-\rho_{1}\right\|_{\mathrm{tr}} .
$$

, which admits the following operational meaning. The following well-known fact relates the trace distance with the optimal probability of distinguishing quantum states. Their fidelity, denoted by $\left.\mathrm{F}\left(\rho_{0}, \rho_{1}\right)\right)$, is

$$
\begin{equation*}
\mathrm{F}\left(\rho_{0}, \rho_{1}\right)=\left\|\sqrt{\rho_{0}} \sqrt{\rho_{1}}\right\|_{\mathrm{tr}} \tag{1}
\end{equation*}
$$

When ρ_{0} and ρ_{1} are classical states, the trace distance $\left|\rho_{0}-\rho_{1}\right|_{\text {tr }}$ is equivalent to the statistical distance between ρ_{0} and ρ_{1}. It is also a well known fact that for two distributions X_{1}, X_{2} over \mathcal{X}, let $p_{x}=\operatorname{Pr}\left[X_{1}=x\right]$ and $q_{x}=\operatorname{Pr}\left[X_{2}=x\right]$ and their statistical distance satisfies

$$
\begin{equation*}
\left|X_{1}-X_{2}\right|_{\mathrm{tr}}=\frac{1}{2} \sum_{x}\left|p_{x}-q_{x}\right|=\sum_{x: p_{x}>q_{x}}\left(p_{x}-q_{x}\right) . \tag{2}
\end{equation*}
$$

For simplicity, when both states are classical, we use $\left(X_{1}\right) \approx_{\epsilon}\left(X_{2}\right)$ to denote $\left|X_{1}-X_{2}\right|_{\text {tr }} \leq \epsilon$.
Moreover, the trace distance admits the following two simple facts.
Fact 1. For any state $\rho_{1}, \rho_{2} \in \operatorname{Dens}(\mathcal{A})$ and $\sigma \in \operatorname{Dens}(\mathcal{B})$, we have

$$
\left|\rho_{1}-\rho_{2}\right|_{\mathrm{tr}}=\left|\rho_{1} \otimes \sigma-\rho_{2} \otimes \sigma\right|_{\mathrm{tr}}
$$

Fact 2. Let $\rho, \sigma \in \operatorname{Dens}(\mathcal{A} \otimes \mathcal{B})$ be any two cq-states where \mathcal{A} is the classical part. Moreover, $\rho=$ $\sum_{a} p_{a}|a\rangle\langle a| \otimes \rho_{B}^{a}$ and $\sigma=\sum_{a} q_{a}|a\rangle\langle a| \otimes \sigma_{B}^{a}$. Then we have

$$
|\rho-\sigma|_{\mathrm{tr}}=\sum_{a}\left|p_{a} \rho_{B}^{a}-q_{a} \sigma_{B}^{a}\right|_{\mathrm{tr}}
$$

References

[1] Donald E. Knuth (1986) The $T_{E} X$ Book, Addison-Wesley Professional.
[2] Leslie Lamport (1994) LATEX: a document preparation system, Addison Wesley, Massachusetts, 2nd ed.

