
Chapter 1

Operational Semantics

I am not a fully operational person

Cliff

1.1 Introduction

Now that we can design a language, we may want to do a few of things, two of which we
will talking about here:

• Give meaning to the language

• Prove correctness of a program

Both of these goals can be achieved through the use of operational semantics. Seman-
tics referring to the meaning of a statement, and operational referring to how something
operates.

1.2 Meaning

If you ever take a philosophical linguistics course1 you talk about some weird things that
happen in languages, but you also talk about how meaning is sometimes attached to words.
Slang in particular falls in and out of favor so figuring out how we attach additional meaning
to words is always brought up. How would you define "vibe" to a non-native speaker when
saying something like "Did not pass the vibe check"? How would you describe "mid" in
a sentence like "Cliff was pretty mid last semester"? Operational semantics is a way to
help describe the meaning of a statement in a programming language. Analogously, how
do you describe the sentence ’fun x -> x 3’ to someone unfamiliar with functional
programming?

1Would recommend Phil360: Philosophy of Language with Alexander Williams

1

2 CHAPTER 1. OPERATIONAL SEMANTICS

There’s plenty of ways that you can describe meaning. In programming language the-
ory there are typically three major ways: denotations semantics, axiomatic semantics and
operational semantics.

• Denotations: describe meaning via mathematical constructs

• Operational: describe meaning via how something operates

• Axiomatic: describing meanings via axioms

How I think about (and I am sure that people more in both the linguistics and PL space
would be mad at me) is that denotational semantics is by giving a definition. For example:
’"Blue" refers to light waves that fall in-between 450 and 495 nm’. Axiomatic semantics gives
examples. For example: ’the sky, the ocean, and that person’s eyes are blue’. Operational
semantics describe how we use it. Example: ’"Blue" is referring to a shade people see
between green and violet’.

So when we talk about the meaning of a program, we want to talk about it in terms of
how the program operates. More specifically, we use operational semantics to communicate
language design ideas. If we want to talk about another language however let’s use some
terms to help us. If I want to talk about some language x , then I will refer to x as the target
language. The language that I will be describing x in, I will call the Meta-language. So If I
want to talk about OCaml, then OCaml will be the target language, and English will be the
Meta-language.

1.3 Correctness

When we talk about correctness, we basically mean, does the program run how we expect
it to run? Can I prove that + 2 3 returns 5 in Math-ew? How can I prove that (+ 2 (*
3 4)) returns 14 in LISP? The answer to this is not much different than proving that ((p ∧
q) ∧ (p ⇒ r) ∧ (q ⇒ r)) → r . Namely, we can make a proof:

p ∧ q
p ⇒ r
q ⇒ r

∴ r

That is, if we know rules of things, we can derive new things. Suppose that we know
that 3 ∗ 4 = 12 and we know that 12 + 2 = 14. If we know these rules that we can say
something like 2 + 3 ∗ 4 = 14 or (+ 2 (* 3 4)) returns 14. However instead of using
defined rules of algebra or logic that we know, we are going to use defined rules of the
target language.

1.4 Operational Semantics

Let us define a very basic language Al anguge :

e → n
→ e ? e

n → 0|1|2|3|...

1.4. OPERATIONAL SEMANTICS 3

A has really two statements that exist in the language. Let us make a rule that describes
what we should do when met with either of these two statements.

If the statement inA is just n , then I want to evaluate to myself. So 3 should evaluate to
3, and 5 should evaluate to 5. This rule is pretty basic and so we could say this is an axiom
in our language, or that we don’t need proof to say that 3 is 3. So we use the following
notation:

n ⇒ n
This is just a conclusion, or something that is true in and of itself.

On the other hand, if I am given a statement that looks like 3?4 I want something to be
evaluated to a value. In A, I want to use ? to add its two operands. So I may need to have
a rule that describes my two operands, and what I should do when I see something that
looks like e ? e.

e1 ⇒ n1 e2 ⇒ n2 n3 is n1 + n2
e1 ? e2 ⇒ n3

This is to say that e1 and e2 are some expressions, and that e1 will eventually evaluate
to some number, n1, while e2 will eventually evaluate to some number n2. We then need to
describe that we want to add the two numbers together to get a final value: n3 is n1 + n2.
This part is described in our meta language. We then want to show that if these statements
are true, then when we see e1 ? e2 that we want to return n3, whatever that is.

This particular example that uses ? instead of +, is just to show you that we can just
arbitrarily use symbols to stand for symbols and as long as we describe what this symbol
does in our target language, then we can show you a rule of what is supposed to happen.

Now that we have our two rules to match each thing in our grammar, we can start making
proofs that show what would happen if we had a statement like 4 ? 3.

In this example, looking at our grammar, we can see that 4 is e1 and that 3 is e2. We also
know that, 4 and 3 are just numbers which we know evaluate to themselves. So constructing
a proof of correctness for the statement 4 ? 4 using the above two rules would look like:

4⇒4 3⇒3 7 is 4 + 3

4 ? 3 ⇒ 7

That also means that we could prove larger expressions such as 3?4?5. Here I will
assign 3 to e1 and 4?5 to e2, but you could instead say that 3?4 is e1 and 5 is e2. For this
particular rule it does not matter, but depending on the operation, you may need to give
more information so you don’t get this ambiguous parse. The proof is as follows:

3⇒3
4⇒4 5⇒5 9 is 4+5

4 ? 5⇒9 12 is 3 + 9

3 ? 4 ? 5 ⇒ 12

As we add more to our language, we need to add more rules to our operational seman-
tics. Let us consider the language Bl anguage :

e → n
→ e + e
→ V
→ letV = e in e

n → 0|1|2|3| . . .
V ⇒ a |b |c |d | . . .

4 CHAPTER 1. OPERATIONAL SEMANTICS

I have changed the ? symbol to a + since we know that we just want to add the sub-
expressions anyway. Additionally, we have now added variables to our language. By adding
variables, we need to add something to our operational semantics: an environment.

Simply put, an environment is a mapping from variables to values.An example environ-
ment could be something like [x:3,y:4] We will denote an arbitrary environment with
the character A. We will also need to update our rules to incorporate this environment.
Let’s first update our rules. The updated number and + rule are:

A; n ⇒ n

A; e1 ⇒ n1 A; e2 ⇒ n2 n3 is n1 + n2
A; e1 ? e2 ⇒ n3

What this means is that each expression ex is being evaluated with the environment A.
So suppose that we have previously bound the variable x is to the value 4. If we want to
evaluate the statement 6 with this environment, then the proof would look like:

A, x : 4; 6 ⇒ 6

I still include A because there are probably other environment variables that we are un-
aware of.

However, this is quite a boring example. What we may care about is how to look up a
variable in our language. That is, what is the rule for e →V ? If we want to evaluateV into
a value, we need to look up that value in the environment. Thus, our rule has to describe
this process. Conventionally, we do this in the following way:

A(x) ⇒ v

A; x ⇒ v

So if had previously bound the variable x to the value 4 and wanted to look up x , it would
look like:

A, x : 4; (x) ⇒ 4

A, x : 4; x ⇒ 4

This rule looks like it’s just a repetition of a line, but recall the idea of the target language
and the meta language. The conclusion is describing the target language, while the premise
or hypothesis is describing what to do in the meta language.

We did do this a bit out of order. Before we can look up anything, we would have first
needed to bind something. So let’s describe the rule of e → letV = e1 in e2.

In this case, following OCaml (this is not always the case), before we bind a value to
a variable, we want to evaluate the expression e1 to a value and then bind that resulting
value to the variable. Then we want to use this new binding when we are evaluating the
expression e2. Consider let x = 3 in x + 1. x+1 is the body and the binding we just
made x = 3 should be used when evaluating this. The rule that describes all this is the
following:

A; e1 ⇒ v A, x : v ; e2 ⇒ e3
let x = e1 in e2 ⇒ e3

So in this case, we are evaluating e1 to a value v , and then adding this binding to the
environment when we evaluate e2.

1.4. OPERATIONAL SEMANTICS 5

Using these rules, let us show a proof of correctness that let x = 3 in x + 4.

A; e1 ⇒ v A, x : v ; e2 ⇒ e3
let x = 3 in x + 4 ⇒ e3

In this case we identify that 3 is e1 and x + 4 is e2.

A; 3 ⇒ v A, x : v ; x + 4 ⇒ e3
let x = 3 in x + 4 ⇒ e3

We know that 3⇒3 so
A;3⇒3 A, x : 3; x + 4 ⇒ e3

let x = 3 in x + 4 ⇒ e3

We then want to use our plus rule when evaluating x + 4

A;3⇒3
A,x :3;e4→n1 A,x :3;e5→n2 n3 is n1+n2

A,x :3;x+4⇒e3

let x = 3 in x + 4 ⇒ e3

Here we can do what we did above an notice that in x + 4 that x is e4 and 4 is e5.

A;3⇒3
A,x :3;x→n1 A,x :3;4→n2 n3 is n1+n2

A,x :3;x+4⇒e3

let x = 3 in x + 4 ⇒ e3

Based on our variable lookup rule we can say that x ⇒ 3 making n1 = 3 :

A;3⇒3

A,x :3;(x)⇒3
A,x :3;x→3 A,x :3;4→n2 n3 is 3+n2

A,x :3;x+4⇒e3

let x = 3 in x + 4 ⇒ e3

We know that 4 evaluates to itself:

A;3⇒3

A,x :3;(x)⇒3
A,x :3;x→3 A,x :3;4→4 n3 is 3+4

A,x :3;x+4⇒e3

let x = 3 in x + 4 ⇒ e3

and we know that 3 + 4 is the value of 7:

A;3⇒3

A,x :3;(x)⇒3
A,x :3;x→3 A,x :3;4→4 7 is 3+4

A,x :3;x+4⇒e3

let x = 3 in x + 4 ⇒ e3

Thus we know that e3 is the final value of the expression.

A;3⇒3

A,x :3;(x)⇒3
A,x :3;x→3 A,x :3;4→4 7 is 3+4

A,x :3;x+4⇒7

let x = 3 in x + 4 ⇒ 7

One point of confusion is what happens when we have a statement like let x = 3
in let x = 4 in x + 5. We would eventually get to a point where we have to evaluate
A, x : 3, x : 4; x . The question of which x you use is dependent on the the rules you have.
In this case, I am adding any new binding to the end of A (A, x : v ; e) which means in order
to get the scope correct, I need to choose the right most binding in the list.

6 CHAPTER 1. OPERATIONAL SEMANTICS

Now that we have some more rules, we can keep adding things to to our grammar (to
our language) and write more rules for how they should act.

Let us consider the language C l anguage (not to be confused with C):

e → n
→ e + e
→ V
→ letV = e in e
→ B →

i f etheneel seen → 0|1|2|3| . . .
V ⇒ a |b |c |d | . . . B ⇒ t r ue |f al se

We should add some rules to incorporate these new values.
TODO, but enough to post notes

1.5 Definitions interpreter

Let us go back to our very simple Al anguage . Recall the idea of Operational Semantics
is to give meaning through how expressions operate. This is the basis of the idea of an
interpreter. How a statement should evaluate is what the interpreter does. Thus, we can
easily make an interpreter that is analogous to the operational semantics of a language.

Consider the rules of Al ang auge

A; n ⇒ n

A; e1 ⇒ n1 A; e2 ⇒ n2 n3 is n1 + n2
A; e1 + e2 ⇒ n3

If we consider the premises and the final result of each rule, we can model an interpreter
to do exactly what we specify in the rules.

Assuming we have a lexer and parser implemented and a type for both Numbers and
an Add construct, we can write an interpreter that follows the above rules:

1 def rec eval expr env= match expr with
2 Num(x) -> x
3 |Add(e1,e2) -> let n1 = eval e1 env in
4 let n2 = eval e2 env in
5 let n3 = n1 + n2 in
6 n3;;

In moving to BLanguage , we gain more rules:

A(x) ⇒ v

A; x ⇒ v

A; e1 ⇒ v A, x : v ; e2 ⇒ e3
let x = e1 in e2 ⇒ e3

We can then update our interpreter accordingly:

1.5. DEFINITIONS INTERPRETER 7

1 def rec eval expr env = match expr with
2 Num(x) -> x
3 |Add(e1,e2) -> let n1 = eval e1 env in
4 let n2 = eval e2 env in
5 let n3 = n1 + n2 in
6 n3
7 |Var(x) -> let v = lookup env x in
8 v
9 |Let(x,e1,e2) -> let v = eval e1 env in

10 let env’ = update env (x,v) in
11 let e3 = eval e2 env’ in
12 e3;;

This assumes that we have an function that adds variable and value pairs to the environ-
ment and a function that looks up a variable in the environment.

	Operational Semantics
	Introduction
	Meaning
	Correctness
	Operational Semantics
	Definitions interpreter

