
CMSC330 – Organization of Programming Languages
Fall 2022
Exam 2

CMSC330 Course Staff
University of Maryland

Department of Computer Science

November 17th, 2022

• Do not remove the staple from your exam packet.

• Do not any individual sheets from the exam packet

• Write your name and UID in the header of each page.

• Refrain from bending or folding the exam in any place except
near the staple, this helps us when scanning your exams.

• Read all questions carefully before starting.

Name:

UID:

Question Points

1 10

2 10

3 10

4 6

5 15

6 10

Total: 61

1

Name: UID:

1. Non-deterministic Finite Automata

(a) 8 points Convert the following NFA into a DFA:

0start

21 5

43 6

7

ϵ

ϵ

a b

c d

ϵ

ϵϵ

ϵ

Scratch space for Question 1:

Page 2

Name: UID:

Your answer here (There is scratch space on the previous page):

(b) 2 points What is an equivalent Regular Expression for the NFA in Question 1(a)?

Page 3

Name: UID:

2. Consider the following NFA:

0start

21 3

54 6

7 8

ϵ

a
ϵ

ϵ

ϵ
ϵ

ϵ

a b

ϵ

ϵ

ϵ

c

(a) 6 points Which of the following strings does the NFA accept? Mark all that apply.
⃝ “aaaaac”
⃝ <empty string>
⃝ “abbc”
⃝ “ababac”
⃝ “ababab”
⃝ “ababc”

(b) 4 points What is an equivalent Regular Expression for the Question 2 NFA?

Scratch space to use as you please:

Page 4

Name: UID:

3. Context Free Grammars

(a) 4 points Write a Regular Expression that describes the same set of strings as the following gram-
mar, if it cannot be converted to a regex, explain why:

S → aSU | T
T → bTU | ϵ
U → cU | c

(b) 6 points Consider the following grammar:

S → bSc | AS | c | ϵ
A → bA | ϵ

i. Provide the derivation of an example string of your own invention (i.e. you cannot use the
string from the next part) that shows that the grammar is ambiguous.

ii. Given the string “bbc”, either draw two ASTs or show two derivations that prove the grammar
is ambiguous:

Page 5

Name: UID:

4. Parsing

(a) 3 points Can the following grammar be parsed by a recursive-decent parser? Select the option
that is the most accurate.

S → bS | C
C → cC | ϵ

⃝ Yes
⃝ No, because the grammar is ambiguous
⃝ No, because the grammar is left recursive
⃝ No, because the grammar is ambiguous and left recursive

(b) 3 points You are using a programming language with the grammar provided below. In your editor,
you write the program “1 2 + *” and try to run the program. At which stage of the implementation
will there be an error, if any?

S → M + S | M - S | M
M → N * S | N / S | N
N → n

⃝ Lexer
⃝ Parser
⃝ Interpreter
⃝ There will be no error, that is a valid program.

5. Semantics

Take note of the following Operational Semantics for a simple language with let-bindings, conditionals,
addition, and comparison of numbers. Each semantic rule is labelled with a name to its left (e.g. the
top-left-most rule is labelled ‘num’).

num
A;n→ n

lookup
A(x) = v

A;x→ v
let

A; e1 → v1 A;x : v1; e2 → v2
A; let x = e1 in e2 → v2

add
A; e1 → v1 A; e2 → v2 v3 is v1 + v2

A; e1 + e2 → v3

gt-true
A; e1 → n1 A; e2 → n2 n1 > n2

A; e1 > e2 → true
gt-false

A; e1 → n1 A; e2 → n2 n1 ≤ n2

A; e1 > e2 → false

if-true
A; e1 → true A; e2 → v

A; if e1 then e2 else e3 → v
if-false

A; e1 → false A; e3 → v

A; if e1 then e2 else e3 → v

Page 6

Name: UID:

(a) 1 point What is the term for a conclusion that automatically holds (i.e. there is nothing to show
in order for us to accept it as true)?

⃝ Predicate
⃝ Syllogism
⃝ Axiom
⃝ Premise

(b) 1 point Which rules, if any, from the Operational Semantics above are an instance of your answer
to Question 5(a)?

(c) 3 points The semantics, as given, do not define how to evaluate booleans, even though they are
used in the semantics! To understand this, look at the fact that there’s no rule where only true or
only false are evaluated. Add your own rule(s) that fix this issue.

Page 7

Name: UID:

(d) 10 points Construct the full proof for the following proposition (you should not use your new
rule):

A; let a = 21 + 21 in (42 + 42) > a→ true

Page 8

Name: UID:

6. Lambda Calculus

(a) 4 points Consider the following lambda expression:

λj.k i λh.e λk.h g λf.j k

Circle the free variables:

λj.k i λh.e λk.h g λf.j k

Circle the bound variables:

λj.k i λh.e λk.h g λf.j k

(b) 6 points Evaluate the following lambda expression as much as possible:

(λm.λn.n m) (λf.λx.f (f x)) (λf.λx.f x)

Result:

Scratch space for Question 6(b):

Page 9

Name: UID:

General Scratch Space

Page 10

Name: UID:

Useful Information

NFA to DFA Algorithm:
NFA (input): (Σ, Q, q0, Fn, σ), DFA (output): (Σ, R, r0, Fd, σn)

R← {}
r0 ← ϵ− closure(σ, q0)
while ∃ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r, a)
e← ϵ− closure(σ,E)
if e /∈ R then

R← R ∪ {e}
end if
σn ← σn ∪ {r, a, e}

end for
end while
Fd ← {r|∃s ∈ rwiths ∈ Fn}

Grammar for the Lambda Calculus:
e := v

| e e
| λ v . e

Page 11

