
CMSC 330 Quiz 2 Fall 2022

Q1. OCaml Typing

Q1.1. Write an expression of the following type: float -> int -> float

fun a b -> a +. float_of_int b

Q1.2. Write an expression of the following type: ‘a -> ‘b -> ‘c -> (‘a -> ‘c -> ‘b
list) -> ‘b list

fun w x y z -> x::(z w y)

Q2. Type Check

The following expression does not type check:

fun f a b -> if a+1=2 then a else if 3 then b+.1.0 else (f b)

Identify the type error(s):

Unbound variables, Mismatched return types, Incorrect type for the if
condition, Mismatched types when applying b to f

Q3. OCaml Coding

Consider the following type:

type shrub = Leaf
 |Branch of shrub * int * shrub

Now consider the following functions:

let rec fun_a acc t =
 match t with
 | Leaf ->
 (match acc with
 | (s, []) -> acc
 | (s, t::ts) -> fun_a (s,ts) t)
 | Branch(l,v,r) ->
 (match acc with

 | (s, ts) -> fun_a (v+s, r::ts) l)

let rec fun_b acc t =
 match t with
 | Leaf -> acc
 | Branch(l,v,r) ->
 let l_fun = fun_b acc l in
 fun_b (l_fun + v) r

Which functions have all of the recursive calls in a tail position?

fun_a, fun_b

Q3. Fill In The Blanks

Given the following collapse_tree , type tree where it has int , left_tree ,
right_tree as tree data structure. Implement a function called biggest_Node that finds

the largest value in the tree.

type tree =
 | Leaf of int
 | Node of int * tree * tree

let rec collapse_tree f t =
 match t with
 | Leaf(x) -> x
 | Node (i, l, r) -> f i (collapse_tree f l) (collapse_tree f r)

Make sure to thoroughly read and understand collapse_tree before implementing the
function. The two blanks below refer to the parameters passed in for the collapse_tree

function.
Example:

biggest_Node (Node(8, Node(4, Leaf(1), Leaf(2)), Node(6, Leaf(7), Leaf(6))))
= 8

biggest_Node (Node(4, Node(6, Leaf(2), Leaf(3)), Node(7, Leaf(5), Leaf(6))))
= 7

biggest_Node (Node(6, Node(4, Node(2, Leaf(1), Leaf(-2)), Leaf(0)), Node(6,
Leaf(-0), Node(4, Leaf(1), Leaf(-2))))) = 6

Prompt:

let biggest_Node t = collapse_tree (_Blank 1_) (_Blank 2_);;

Blank #1:
fun x l r -> if x > l && x > r then x else if l > r then l else r

Blank #2:
t

